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The previous chapter has dealt with the description and classification of crystal
structures without paying too much attention to the reasons why a particular
compound prefers one structure type to another. Crystal structures are E
influenced by a considerable number of factors—atom size, bonding type,
electron configuration, etc.—and while each factor is understood fairly well in
isolation, it is more difficult to assess the effect of all the factors in combination. b
Thus, it is a difficult, if not impossible, task to predict the structure of a new or
unknown compound unless it falls into an obvious category such as a new spinel
or perovskite phase. In this chapter, some of the factors that influence crystal §
structures are considered and an attempt made to review current ideas in crystal .4
chemistry.

8.1 Preliminary survey

The structure adopted by a particular crystalline compound depends, to a first )
approximation, on three main factors: the general formula of the compound and
the valencies of the elements present, the nature of the bonding between the atoms
and the relative size of the atoms or ions. ‘

8.1.1 General formulae, valencies and coordination numbers

Use of the term ‘general formula’ here refers to the relative number of atoms o
each type that are present, without specifying what the atoms are, i.e. for a
compound A B, the general formula gives the values of x and y without f'
identifying A and B. For such a compound A, B,, the coordination numbers of A
and B are related directly to the general formula. A general rule is that: th
coordination numbers of A and B are in the ratio y: x, provided that direct A—A or ]
B-B contacts do not occur. This applies to most ionic, polar and covalent
polymeric materials but not to catenated compounds, such as polymers which,
have C—C bonds. Thus, for a compound AB,, the coordination numbers of ;
A(by B) and B(by A) are in the ratio of 2:1, as in SiO,(4:2), TiO,(6:3) and CaF
(8:4). Proof of this rule is not given here but after a little thought it should b
obvious that it applies, at least to simple formulae, AB, AB,, etc. The rule does.
not predict absolute coordination numbers for a given formula but it does place
restrictions on the combination of coordination numbers that are possible in
structure. <

Average cation CN _ z
Anion CN x+y

in which the average cation CN is given by

x(CNof A) + y(CN of B)
x+y 4
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Substitution of (8.2) into (8.1) gives

x(CNof A) + y(CN of B) = z(CN of C) 8.3

The application of (8.3) can be seen in the following examples:

(a) Perovskite, CaTiOs, contains octahedral Ti** and twelve coordinate Ca?*
ions. From (8.3), therefore, the anion CN is calculated to be six. The
actual structure of perovskite is in agreement with this since oxygen is

- coordinated octahedrally to two Ti** and four Ca?* ions.

(b) Spinel, MgALO,, contains tetrahedral Mg?* and octahedral AP** ions.

From (8.3), the oxygen CN is calculated to be four. This is correct since,

%n spinel, oxygen is tetrahedrally coordinated to three AP* and one Mg?t
ions.

. This relationship between general formulae and coordination number is of
!1ttle predictive value alone since it cannot be used in the absence of structural
information. However, it does allow a certain degree of rationalization of
formulae and coordination numbers and is useful for checking the anion CN in
complex structures. It breaks down when bonding occurs between atoms of the
same type, e.g. in CdCl, in which chlorine—chlorine contacts occur.

The above comments apply to the relative coordination numbers in a
compound and take no account of the valency of the atoms. In molecular
materials, the absolute coordination numbers are obviously controlled by
valeqcy since electron pair covalent bonds hold the molecules together. Unless
multiple or partial bonds occur, the number of bonds to a particular atom in a
n:olecule is equal to the coordination number and hence to the valency of that
atom.

In non-molecular materials, however, the valency of an atom or ion does not
havc? a direct bearing on coordination numbers and structure, apart from its
obvious importance in controlling the general formula of the compound. Thus,
l‘he compounds in the series, LiF, MgO, ScN, TiC, all have the same general
formula, AB, and the same crystal structure, that of rock salt. Coordination
number.s are 6:6, therefore, but the valencies of the atoms increase from one in LiF
to fgqr in TiC. The type of bonding present certainly varies across the series, from
ionic in LiF to essentially covalent in TiC, but the structure, given by the relative
arrangement of atoms, is independent of atom valence.

8.1.2 Bonding

The nature of the bonding between atoms affects considerably the coordi-
nation numbers of the atoms and hence has a major influence on the crystal
sl.ructurg that is adopted. Broadly speaking, ionic bonding leads to structures
wnh_ high symmetry and in which the coordination numbers are as high as
possible. In this way, the net electrostatic attractive force which holds crystals
together (and hence the lattice energy) is maximized. Covalent bonding, on the
other hand, gives highly directional bonds in which one or all of the atoms present
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has a definite preference for a certain coordination environment, irrespective of
the other atoms that are present. The coordination numbers in covalently bonded !
structures are usually small and may be less than those in corresponding ionic
structures which contain atoms of similar size to those in the covalent structure.

The type of bonding that occurs in a compound correlates fairly well with the
position of the component atoms in the periodic table and, especially, with their |
electronegativity. Alkali and alkaline earth elements usually form essentially 1
ionic structures (beryllium is sometimes an exception), especially in combination 4
with smaller, more electronegative anions such as 0?" and F~. Covalent 4
structures occur especially with (a) small atoms of high valency which, in the }
cationic state, would be highly polarizing, e.g. B**, Si*", P5*,$%*, etc.,andtoa
lesser extent with (b) large atoms which in the anionic state are highly polarizable, b
e.g. I, $. '

Most non-molecular compounds have bonding which is a mixture ofionicand §
covalent and, as discussed later, it is becoming possible to make quantitative j
assessments of the ionicity of a particular bond, ie. the percentage of ionic §
character in the bond. An additional factor in some transition metal compounds -
is the occurrence of metallic bonding. E

Some clear-cut examples of the influence of bonding type on crystal structure 1
are as follows: 1

(a) SrO, BaO, HgO. SrO and BaO both have the rock salt structure with 1
octahedrally coordinated M** ions. Based on size considerations alone, and §
if it were ionic, HgO would also be expected to have the same structure.
However, mercury is only two coordinate in HgO and the structure may be
regarded as covalent. Linear O—Hg—O segments occur in the structure and
may be rationalized on the basis of sp hybridization of mercury. The ground
state of atomic mercury is , N

(Xe core) 4% 5d'° 65°

The first excited state, corresponding to mercury (ID), is
(Xe core) 4f'* 5d'° 6s' 6p'

Hybridization of the 6s and one 6p orbital gives rise to two, linear sp hybr
orbitals, each of which forms a normal, electron pair, covalent bond
overlap with an orbital on oxygen. Hence mercury has a CN of two in Hg
AlF,, AICl,, AlBry and All,. These compounds show a smooth transitios
from ionic to covalent bonding as the electronegativity difference between thi]
two elements decreases. Thus, AlF, is a high melting, essentially ionic solidy
with a distorted octahedral coordination of the AP ions; its structure if
related to that of ReO,. AICl, has a layered, polymeric structure in the solid|
state similar to the structure of CrCly, which is related to the CdCl, and Cdi"
structures. The bonds may be regarded as part ionic/part covelent. AlBr, and]
All, have molecular structures with dimeric units of formula Al,X,. Theit]
structure and shape is shown in Fig 7.10 and the bonding betw A
aluminium and bromine or iodine is essentially covalent.

(b)
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Halides of other elements, e.g. Be, Mg, Ga, In, also show variations in bond
type and structure, depending on the halide. The trends are always the same; with
the fluorides there is the largest difference in electronegativity between thé two
c.slemen‘ts and these structures are the most ionic. With the other halides
increasing covalent character occurs in the series, chloride—bromide—iodide.

8.1.3 Size

The relative size of the atoms in a compound has a major influence on the
§trgcture adopted, especially for more ionic structures. A guiding principle in
ionic structures is that the coordination number of a particular ion is as large as
poss1b_le, provided that it can be in contact with all of its neighbouring ions of
oppos1t.e charge. The limiting situation occurs when a cation is too small to fit
snu_gly into a particular hole in the anion array and a hypothetical structure in
Whlf:h acation canrattle inside its hole is regarded as unstable. The limiting size of
Fhe interstitial hole in various anion arrays, e.g. f.c.c. and b.c.c,, can be estimated
in thepry, using the radius ratio rules (Section 8.2.3), but it must be stated that in,
practice th‘ere are many exceptions to the rules. The general relation between size
anq coordination number is clear, however; as the value of the ratio (cation
radlus/anion radius) increases, so the coordination number of the cation
increases. A good example of this, and to which the radius ratio rules may
apparently be applied successfully, is oxides, MO,. With increasing size of M, the
structure and coordination number changes in the sequence: ,

CO, (CNofC=2)
SiO, (CN of Si=4)
TiO, (CN of Ti = 6)
PbO, (CN of Pb=8)

Other examples of this trend are:
BeF,(SiO,str., CN = 4); MgF,(TiO,str., CN = 6);
Rb,O(CN =4); Cs,0(CN =6)
BeO(ZnS str., CN =4); MgO(NaCl str.,CN = 6)

CaF,(CN = 8)

In molecular materials, however, size considerations are less important. This is
partly because the coordination numbers in molecular materials are controlled
by valency and partly because the covalent radii of elements do not show the

sime spread. of values as do the ionic radii. Usually, the radii of a particular
clement are in the following sequence:

Cation radius < covalent radius < anion radius

ullhough few elements can exist in all three states. Thus magnestum may be
cationic or covalent in its compounds but never anionic, whereas fluorine may be

covalent or anionic but never cationic. Examples of elements which may exist in
ull three states are hydrogen and iodine.
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Because elements do not differ too much in their covalent radii (see Table 8.10
later), it is usually possible to satisfy the valence and bonding requirements o
atoms in molecules without interference from size problems. For example
consider CI, which is a covalently bonded, tetrahedral molecule. The covalent |
radius of carbon is large enough that four covalent C—I bonds can form. If the j}
structure were ionic, however, the C** ion (which does not exist, chemically)
would be too small to be tetrahedrally coordinated by the large I” ions. ‘

8.2 lonic structures

Purely ionic bonding in crystalline compounds is an idealized or extreme form:
of bonding which is rarely attained in practice. Even in structures that ar
regarded as essentially ionic, e.g. NaCland CaO, there is usually a certain amoun|
of covalent bonding between cation and anion which acts to reduce the charge o
each. The degree of covalent bonding increases with increasing valence of the ion
to the extent that ions with a net charge greater than + 1 or — 1 appear unlik
to exist. Thus, while NaCl may reasonably be represented as Na * Cl~, TiC (whic
also has the NaCl structure) certainly does not contain Ti** and C*~ ionsand th:
main bonding type in TiC must be non-ionic. This brings us to a dilemma. Do we
continue to use the ionic model in the knowledge that for many structures, e.g:
Al,O,, CdCl,, a large degree of covalent bonding must be present? If not, we
mnust find an alternative model for the bonding. In this chapter, ionic bonding i
given considerable prominence because of its apparent wide applicability and it
usefulness as a starting point for describing structures which in reality have
considerable amount of covalent bonding. In Section 8.3 and 8.4, two methods of
assessing the degree of covalent character in ‘ionic structures’ are discussed.

8.2.1 Ions and ionic radii

ionic radii of Pauling (1928), Goldschmidt and others are now thought to
seriously in error; at the same time, our concepts of ions and ionic structures ar
also undergoing revision. In recent compilations of ionic radii, e.g. of Shanno!
and Prewitt (1969, 1970), cations are shown as being larger and anions sma
than previously thought. For example, Pauling radii of Na* and F~ are 0.98 ang
1.36A, respectively, whereas Shannon and Prewitt give values of 1.14 to 1.30 A
depending on the coordination number, for Na™ and 1.19A for F~. )

These changes have arisen largely because, with modern, high quality X-ra
diffraction work it is possible to obtain fairly accurate maps of the distribution of }
electron density throughout ionic crystals. Thus, one can effectively ‘see’ ions ang, §
tell something about their size, shape and nature. In Fig. 8.1 is shown an electro
density ‘contour map’ (see Chapter 5, Section 5.5.6) for LiF for a section passi
through the structure parallel to one unit cell face. The map therefore passes

.
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Fig. 8.1 Electron density contour map of LiF: a section through part of the
unit cell face. The electron density (electrons A ~3) is constant along each of
the contour lines. (From Krug, Witte and Welfel, 1955)
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Fig. 8.2 Variation of electron density along the line connecting adjacent

Li and F nuclei in LiF. (From Krebs, 1968). P = Pauling radius of Li*,
G = Goldschmidt radius, M = minimum in electron density
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through the centres of Li* and F~ ions located on the (100) planes. In Fig. 8.2 is
shown the variation of electron density with distance along the line that connects
adjacent Li* and F~ ions. From Figs 8.1 and 8.2 and similar diagrams for other
structures (Fig. 5.39 a, for NaCl), the following conclusions about ions in crystals
may be drawn:

(a) Ions are essentially spherical.

(b) Ions may be regarded as composed of two parts: a central core in which most
of the electron density is concentrated and an outer sphere of influence which
contains very little electron density.

(c) Assignment of radii to ions is difficult; even for ions which are supposedly in
contact, it is not obvious (Fig. 8.2) where one ion ends and another begins.

Conclusion (b) is in contrast to the oft-stated assumption that ‘ions can be
treated as charged, incompressible, non-polarizable spheres’. Certainly, ions are
charged, but they cannot be regarded as spheres with a clearly defined radius.
Their electron density does not decrease abruptly to zero at a certain distance 4
from the nucleus but decreases only gradually with increasing radius. Instead of 3
being incompressible, ions are probably quite elastic, by virtue of flexibility in the
outer sphere of influence of an ion while the inner core remains unchanged. Thisis
necessary in order to explain variations of apparent ionic radii with coordination |
number and environment (see later). Within limits, ions can therefore expand or
contract as the situation demands.

From Figs 8.1 and 8.2, most of the electron density is concentrated close to the
nuclei of the ions; in a crystal, therefore, most of the total volume is essentially free
space and contains relatively little electron density. A

The difficulties involved in determining ionic radii arise because, between §
adjacent anions and cations, the electron density passes through a broad
minimum. For LiF (Fig. 8.2), the radii for Li * given by Pauling and Goldschmid
are marked together with the value which corresponds to the minimum in the §
electron density along the line connecting Li* and F~. Although the values of }
these radii vary from 0.60 to 0.92A, all lie within the broad electron density §
minimum of Fig. 8.2.

The many methods that have been used in the past to estimate ionic radii wil
not be discussed here. In spite of the difficulties involved in determining absolute §
radii, it is necessary to have a set of radii for reference. Fortunately, most sets O '
radii are additive and self-consistent; provided one does not mix radii from
different tabulations it is possible to use any set of radii to evaluate interionic §
distances in crystals with reasonable confidence. Shannon and Prewitt give two §
sets of radii: one is based on ry = 1.40A and is similar to Pauling, Goldschmidt, 4
etc.; the other is based on rg- = 1.19A (and rp.- =1.26 A) and is related to the}
values determined from X-ray electron density maps. Both sets are compre- "
hensive for cations in their different coordination environments but only pertain )
to oxides and fluorides. We choose here to use the Shannon and Prewitt set based
on r._ = 1.19A and ro: - = 1.26A. Cation radii are shown in graphical form in |

\
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Fig. 8.3 Ionic radii as a function of coordination n i
. umber for cations M™* to
M** (From Shannon and Prewitt, 1969, 1970)) Data based on rp- = 1.19 A(and
ro:- =1.264)

Fig. 8.3 as a function of cation coordination number. Radii are given for ions M *
lo'M‘”; it should be stressed that the more highly charged ions are unlikely to
exist as such in the purely ionic state but probably have their positive charged
reduced by polarization of the anion and consequent. partial covalent bonding
between cation and anion.

The following trends in ionic radii, with position in the periodic table, formal
charge and coordination number, occur: ,
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(a) For the s- and p-block elements, radii increase with.a.tomic number for
any vertical group, €.8. octahedrally coordinat.ed alkali ions. o o
(b) For any isoelectronic series of cations, the radius decreases with increasing
charge, e.g. Na*, Mg?*, A" and sitt. . m
(c) For any element which can have variable oxidation states, tl:e; cat;&n radius 1
decreases with increasing oxidation state, e.g._VZ‘.‘, L AR A ARCEE |
(d) For an element which can have various coordination numbers, the cationic ;;
radius increases with increasing coordination number. . o
(¢) The ‘lanthanide contraction’ occurs as follows: across the lanthanide series, i
ions with the same charge but increasing atomic number show a reduction in |
size due to the ineffective shielding of the nuclear charge by+ the d and, ]
especially, felectrons, €.g. octahedral radii, La>" (I.ZOA) ...Eu? .(.1.09A)... 1
Lu3* (0.99A). Similar effects occur across some Series of transition metal:
) 1;')lrlles radius of a particular transition metal ion.is smaller than tl:at of tRe ]
corresponding main group ion for the reasons given in (¢), €.g. Rb (1.63A) :
and Ag* (1.29A) or Ca** (1.14A) and Zn?* (0.89A). ' E
(g) Certain pairs of elements positioned diagonally to one another in the [2)€+I'10dlc
table have similar ionic size (and chemistry), e.g. Li* (0.88 A) and Mg?"* (0.86
A). This is due to a combination of effects (a) and (b). ‘

8.2.2 Ionic structures—general principles

Consider the following as a guide to ionic structures:

(a) Tons are regarded as charged, elastic .and polar.izable spheres. ;
(b) Ionic structures are held together by electrostat.lc forces ar'1d, therefore, are;
arranged so that cations are surrounded by amons,.and vice versa.
(¢) In order to maximize the net electrostatic ?ttractlon between ions in a
structure (i.c. the lattice energy), coordinathn numbers are as high
possible, provided that the central ion maintains .contact (via its sphere of :
influence) with all its neighbouring ions of opposite charge.:. o
Next nearest neighbour interactions are of the anion—anion and catlon-t;:
cation type and are repulsive. Like ions arrange themsel.ves to be as far apaf& !
as possible, therefore, and this leads to structures of high symmetry with a
maximized volume. o of'
(e) Local electroneutrality prevails, i.e. the valence of an ion is equal to the sum of}

the electrostatic bond strengths between it and adjacent ions of opposite
charge. ,

@

Point (a) has been considered in the prev@ous secti.on ; ions are obviously
charged, are elastic because their size varies with cqordlnatlon number and arq
polarizable when departures from purely ionic bonding oceurs. For example, tm
electron density map for LiF (Fig. 8.1) shows a small dls.t+o.rthn from .sphencaal\(
shape in the outer part of the sphere of influence of the Li™ ion, and this may bea,«
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attributed to the occurrence of a small amount of covalent bonding between Li™*
and F~.

Points (b) and (d) infer that the forces which hold ionic crystals together and the
net energy of the interaction between the ions are the same as would be obtained
by regarding the crystal as a three-dimensional array of point charges and
considering the net coulombic energy of the array. From Coulomb’s Law, the
force F between two ions of charge Z , eand Z _ e, separated by distance r, is given
by

F:(Z_+e)gZ_e)

" (8.4)

A similar equation applies to each pair of ions in the crystal and evaluation of the
resulting force between all the ions leads to the lattice energy of the crystal
(Section 8.2.5).

Point (c¢) includes the proviso that nearest neighbour ions should be ‘in
contact’. Given the nature of electron density distributions in ionic crystals
(Figs 8.1 and 8.2), it is hard to quantify what is meant by ‘in contact’. It is
nevertheless an important factor since, although the apparent size of ions varies
with coordination number, most ions, smaller ones especially, appear to have a
maximum coordination number; for Be?* thisisfour and for Li™ itis six. Ions are
flexible, therefore, but expand or contract only within f{airly narrow limits.

The idea of maximizing the volume of ionic crystals, point (d) is rather
unexpected (Brunner; O’Keeffe) since one is accustomed to regarding ionic
structures and derivative close packed structures, expecially, as having mini-
mum volume. There is no conflict, however. The prime bonding force in ionic
crystals is the nearest neighbour cation-anion attractive force and this force is
maximized at a small cation—anion separation (when ions become too close,
additional repulsive forces come into play, Section 8.2.5, thereby reducing the net
attractive force). Superposed on this is the effect of next nearest neighbour
repulsive forces between like ions. With the constraints that (a) cation—anion
distances be as short as possible and (b) coordination numbers be as large as
possible, like ions arrange themselves to be as far apart as possible in order to
reduce their mutual repulsion. This leads to regular and highly symmetrical
arrays of like ions. It has been shown (O’Keeffe) that such regular arrays of like
jons tend to have maximized volumes and that, by distorting the structures, a
reduction in volume is possible, at least in principle.

An excellent example of a structure whose volume is maximized is rutile (see
Chapters 6 and 7). The buckling of the oxide layers (Fig. 6.16) causes the
coordination number of oxygen to be reduced from 12 (as in h.c.p.)) to 11 (as in
p.t.p.). The coordination of titanium by oxygen, and vice versa, is unaffected by
this distortion but the overall volume of the structure increases by 2 to 3 per cent.

Point (¢) is Pauling’s electrostatic valence rule, the second of a set of rules
formulated by Pauling for ionic crystals. Basically, the rule means that the charge
on a particular ion, e.g. an anion, must be balanced by an equal and opposite

charge on the surrounding cations. However, since these cations are also shared
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with other anions, it is necessary to estimate the amount of positive charge that is §
effectively associated with each cation—anion bond. For a cation M™" sur- -
rounded by n anions, X*7, the electrostatic bond strength (e.b.s) of the cation- §

anion bonds is defined as
ebs. == 8.5) |
n i

For each anion, the sum of the electrostatic bond strengths of the surrounding |
cations must balance the negative charge on the anion, i.e. ‘

m
Z;—x
For example:

(a) Spinel, MgAl,O,, contains octahedral A’ and tetrahedral M g2* jons;each §
oxygen is surrounded tetrahedrally by three Al>* ionsand one Mg?* ion. We'
can check that this must be so, as follows:

For Mg?": ebs.=2=14
For AI*": ebs.=3=3
Therefore,

Yebs.GAP* +1Mg?*) =2
We can show that three SiO, tetrahedra cannot share a common corner i
silicate structures: ‘
For Si**:
Therefore, for an oxygen that bridges two SiO, tetrahedra, Y e.bs. = 2, whic

is acceptable. However, three tetrahedra sharing a common oxygen would}
give Y e.b.s. =3 for that oxygen, which is quite unacceptable.

)

ebs.=%=1

This rule of Pauling’s provides an important guide to the kinds of polyhedr:
linkages that are and are not possible in crystal structures. In Table 8.1 is given
list of some common cations with their formal charge, coordination number an:
electrostatic bond strength. In Table 8.2 are listed some allowed and unallowed
combinations of polyhedra about a common oxide ion, together with some]
examples of the allowed combinations. Many other combinations are possib
and the reader may like to deduce some, bearing in mind that there are als
topological restrictions on the number of possible polyhedral combinations; thug
the maximum number of octahedra that can share a common corner is six (as in§
rock salt), etc. .

Pauling’s third rule is concerned with the topology of polyhedra and has been f
considered in the previous chapter. Pauling’s first rule states: ‘A coordinated
polyhedron of anions is formed about each cation, the cation—anion distance
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Table 8.1 Electrostatic bond strengths of some cations

Cation with Coordination Electrostatic
formal charge number bond strength
Liv 46 4,4
Na* 6,8 14

Be2 + 3, 4 %, %
Mg?* 4,6 i1
Ca?* 8 1

Zn?* 4 1

AL 46 14
Cr3t 6 3

Si4 + 4 1

Ge** 4,6 1,3
Ti** 6 2

Th4 + 8 %

Table 8.2 Allowed and unallowed combinations of corner-sharing oxide polyhedra

Allowed Example Unallowed
28i0,, tet. Silica > 28i0,, tet.
IMgO,tet. + 3A10,0ct. Spinel 3AIO0, tet.

18i0,tet. 4+ 3MgO,oct. Olivine 1810 tet. + 2A10 jtet.
8LiO tet. Li,O 4TiOg oct.

2TiO4oct. + 4CaO, ,dod. Perovskite

3TiOgoct. Rutile

being determined by the radius sum and the coordination number of the cation
by the radius ratio.’ The idea that cation—anion distances are determined by the
radius sum is implicit to every tabulation of ionic radii since a major objective of
such tabulations is to be able to predict, correctly, interatomic distances. Let us
now consider coordination numbers and the radius ratio rules.

8.2.3 The radius ratio rules

In ideally ionic crystal structures, the coordination numbers of the ions are
determined largely by electrostatic considerations. Cations surround themselves
with as many anions as possible, and vice versa. This maximizes the electrostatic
attractions between neighbouring ions of opposite charge and hence maximizes
the lattice energy of the crystal (see later). This requirement led to the formulation
of the radius ratio rules for ionic structures in which the ions and the structure
adopted for a particular compound depend on the relative sizes of the ions. There
are two guidelines to be followed. First, a cation must be in contact with its
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anionic neighbours and so this places a lower limit on the size of cation which may
occupy a particular site. A situation in which a cation may ‘rattle’ inside its anion
polyhedron is assumed to be unstable. Second, neighbouring anions may or may
not be in contact. Using these guidelines, one may calculate the range of cation
sizes that can occupy the various interstitial sites in an anion array, as follows.

For a face centred cubic array (e.g. NaCl structure), in which the anions are in
contact, octahedral cation sites have a minimum radius r,, given from Fig. 8.4 by

@r)*+@2r)* = [Ary+1)]?
and therefore,

Im_ /2-1=0414

r

Atoms 1,2, 3 and 4, 5, 6 belong to adjacent close packed layers and an octahedral
site lies midway between. Atoms 1, 2 and 3 are in contact, as also are 4, 5 and 6.

Between the layers, atoms 2 and 3 are in contact with 4 and 5. For smaller cations
(i.e. r,/r, < 0.414) the cation could not be in contact with all six anionic nearest

neighbours and, therefore, according to the theory, a structure with lower cation

coordination number would result. (Note that, in practice, structures do occur in

® @}9 v—®
9: o |
af A
K
'm*’x/\\
{ N

Fig. 8.4 Octahedral and tetrahedral cation sites in a
face centred cubic (cubic close packed) anion array
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which a cation is obviously too small for its particular site, e.g. the sodium ions in
the solid electrolyte, f-alumina, occupy very large sites.)

For radius ratios > 0.414 the cation would push the anions apart and this
happens increasingly up to a radius ratio of 0.732. At and above this value, the
cation is sufficiently large to have eight anionic neighbours, all of which are in
contact with the cation. The CsCl structure (Fig. 7.20) has eight-coordinate ions.
Here,

[(r, + r,)]* = (cube body diagonal)?
=3(2r)?
Therefore,
Im_ /3-1=0732
rX
For tetrahedral coordination (Fig. 8.4), distance 5 — K is the body diagonal of
a small cube and is equal to 2(r,, + r,). Therefore,

Q@r)? +(/2r) = [2r, +1)]?

and
T (/62 =0225

The minimum radius ratios for various coordination numbers are given in
Table 8.3. With the exception of CN =8, all are applicable to close packed
structures. Note that CN = 5 is absent from the table; in close packed structures,
itis not possible to have a coordination number of five in which all M—X bonds
are of the same length.

The radius ratio rules have had a limited amount of success in predicting trends
in coordination number and structure type and at best can only be used as a
general guideline. Radius ratios depend very much on which table of ionic radii is
consulted and there appears to be no clear advantage in using either one of the
more traditional sets or the modern set of values based on X-ray diffraction
results. For example, for RbI, r + /r — = 0.69 or 0.80, according to the tables
based on ry.- = 1.40 and 1.26 A, respectively. Thus one value would predict six-
coordination (rock salt), as observed, but the other predicts eight-coordination
(CsCl). On the other hand, Lil has r + /r — =0.28 and 0.46, according to the

Table 8.3 Minimum radius ratios for different
cation coordination numbers

Coordination Minimum r:r,
Linear, 2 —
Trigonal, 3 0.155
Tetrahedral, 4 0.225
Octahedral, 6 0414
Cubic, 8 0.732
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Table 8.4 Structures and radius ratios of oxides, MO,

Calculated radius QObserved structure

Oxide ratio* type

O ~0.1 CN =2) Molecular (CN=2)
S0t 0.32 ECN -4 Silica (CN = 4)
’ 043 (CN=4) Silica (CN =4
GeO, { 0.54 (CN=6) Rutile (CN =6)
TiO, 059 (CN=6) Rutile (CN=06)
SnO, 0.66 (CN=6) Rutile (CN =6)
PbO, 0.73 (CN=6) Rutile (CN =6)
{ 0.68 (CN=6) Fluorite (CN =38

HfO 077 (CN=9) .
: { 0.75 (CN= 3 Fluorite (CN=8)

CeO 0.88 (CN= .
Th022 095 (CN=8) Fluorite (CN=8)

* Since cation radii vary with coordination number, as shown in Fig. 8.3,. radjus
ratios may be calculated for different coordination numbers. The coordination
numbers used here are shown in parentheses. Calculations are based on
ro:- =126 A.

tables based on ro.- =140 and 1.26 A, respectively. One value predict ;
tetrahedral coordination and the other octahedral (as observed). For thc? lgrger ;
cations, especially caesium, r+/r—>1, and it is perhaps more realistic tQ '
consider instead the inverse ratio, r — /r +, for CsF. _ . o

A more convincing example of the relevance of radius ratio rulesis proxflded b
oxides and fluorides of general formula, MX,. Possible structure types, w1th the
cation coordination numbers, are silica (4), tutile (6) and fluorite (8). A se_lectlon. 0
oxides in each group is given in Table 84, together with tbe radlus' ratvlo ;
calculated from Fig. 8.3 (based on rp.- =1.26 A). Changes in coordln_atl >
number are expected to occur at radius ratios 0f0.225,0.414 and 0.732. Bearing 1ﬁ:
mind that the calculated radius ratio values depend on the partlgular table dﬂ
radii that is consulted, the agreement between theory anfl practice is reasonab ¢
For example, GeO, is polymorphicand can have both sihga and rutile stru.cture
the radius ratio calculated for tetrahedral coordination of germanium *
borderline between the values predicted for CN =4 and 6. ”

8.2.4 Borderline radius ratios and distorted structures o

The structural transition from CN = 4 to 6 which occurs with increasing catio |
size is often clear-cut. A good example is provided by GeO, which has a bord .
line radius ratio and which also exhibits polymorphism. Botl} polymorphsvhav
highly symmetric structures; onc has a silica-like structure with CN =4 and thd
other has a rutile structure with CN = 6. Polymorphs with CN = 5 do not occury
WI;E gfl?rzcases of borderline radius ratios, however, distorted polyhedra and/or
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coordination numbers of 5 are observed. Thus V3* (radius ratio = 0.39 for
CN = 4 or radius ratio = 0.54 for CN = 6) has an environment in one polymorph
of V,0O; which is a gross distortion of octahedral; five V—O bonds are of
reasonable length, in the range 1.5 to 2.0 A, but the sixth bond is much longer, 2.8
A, and the coordination is better regarded as distorted square pyramidal. It
appears that V3% is rather small to happily occupy an octahedral site and that,
instead, a structure occurs which is transitional between tetrahedral and
octahedral. Similar types of distortions occur between CN = 6 and 8. Thus, ZrO,
has a borderline radius ratio (0.68 for CN = 6; 0.78 for CN == 8) and although it
may have the fluorite structure at very high temperatures ( > 2000 °C), witha CN
of 8 for zirconium, in its normal form at room temperature as the mineral
baddleyite, zirconium has a CN of 7.

Less severe distortions occur in cases where a cation is only slightly too small
for its anion environment. The regular anion coordination is maintained but the
cation may rattle or undergo small displacements within its polyhedron. In, for
example, PbTiO, (radius ratio for Ti = 0.59 for CN = 6), titanium may undergo
displacement by ~ 0.2A off the centre of its octahedral site towards one of the
corner oxygens. The direction of displacement may be reversed under the action
of an applied electric field and this gives rise to the important property of
ferroelectricity (Chapter 15).

The concept of ‘maximum contact distance’ has been proposed by Dunitz and
Orgel (1960). If the metal-anion distance increases above this distance then the
cation is free to rattle. If the metal-anion distance decreases the metal ion is
subjected to compression. However, the maximum contact distance does not
correspond to the sum of ionic radii, as they are usually defined, and this is a
difficult concept to quantify.

8.2.5 Lattice energy of ionic crystals

Ionic crystals may be regarded as regular three-dimensional arrangements of
point charges. The forces that hold the crystals together are entirely electrostatic
in origin and may be calculated by summing all the electrostatic repulsions and
attractions in the crystal. The lattice energy, U, of a crystal is defined as the net
potential energy of the arrangement of charges that forms the structure. It is

cquivalent to the energy required to sublime the crystal and convert it into a
collection of gaseous ions, e.g.

NaCl(s) »Na*(® +Cl™ (g, AH=U

The value of U depends on the crystal structure that is adopted, the charge on the
ions and the internuclear separation between the anion and cation.

Two principal kinds of force are involved in determining the crystal structure
of ionic materials:

(a) The electrostatic forces of attraction and repulsion between ions. Two ions
M2" and X%~ separated by a distance, r, experience an attractive force, F,
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given by Coulomb’s Law:

(84) |
and their coulombic potential energy, V, is given by

" Z,Z_é
V=J Fdr= —% ®7 4
(b) Short range repul'sive forces which are important when atoms or ions are $0

close together that their electron clouds begin to overlap. Born suggested that /g

this repulsive energy has the form:

V=

@

where B is a constant and the Born exponent, n, has a value in the range 5 to |
12. Because n is large, V falls rapidly to zero with increasing r.

The lattice energy, U, of a crystal may be calculated by combining the net
electrostatic attraction and the Born repulsion energies and finding the
internuclear separation, r,, which gives the maximum U value. The procedure is’
as follows: ‘

Consider the NaCl structure (Fig. 7.13a). Between each pair of ions in a cryst
there is an electrostatic interaction given by equation (8.4). We wish to sum all
such interactions which occur in the crystal and calculate the net attractive
energy. Let us first consider one particular ion, e.g. Na™ in the body centre of the
unit cell (Fig. 7.13a), and calculate the interaction between it anq its neighbours.
Its nearest neighbours are six Cl~ ions in the face centre positions and at a'
distance r (2r is the value of the unit cell edge). The attractive potential energ
(ignoring for the moment C1™~Cl~ repulsions) is given by K

eZ.,Z_
r

V=—6

potential energy term
2Z.Z_
p=+ 128522
Jr

The third nearest neighbours are eight C1™ ions at the cube corners and distancg
\/Sr; these are attracted to the central Na* ion according to
ez, 7 _

Jar

y=-8
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Table 8.5 Madelung constants for some
simple structures

Structure type A

Rock salt 1.748
CsCl 1.763
Wurtzite 1.641
Sphalerite 1.638
Fluorite 5.039
Rutile 4.816

The net attractive energy between our Na* ion and all other ions in the crystal is
given by an infinite series:

e2Z,.Z_ ( 12 8 6 )
= - 6— +t——=—-—F+""
r V2 \/3 \/Z
This summation is repeated for each ion in the crystal, i.e. for 2N ions per mole of

NaCl. Since each ion pair interaction is thereby counted twice it is necessary to
divide the final value by 2, giving

8.12

2
v=-2Z:ZoNy 8.13)
where the Madelung constant, A, is the numerical value of the series summation in
parentheses in equation (8.12). The Madelung constant depends only on the
geometrical arrangement of point charges. It has the same value, 1.748, for all
compounds with the rock salt structure. Values of A for some other simple
structure types are given in Table 8.5.

If equation (8.13) represented the only factor involved in the lattice energy, the
structure would collapse in on itself since ¥ al/r (Fig. 8.5). This catastrophe is
avoided by the mutual repulsion between ions, of whatever charge, when they
become too close, and is given by equation (8.8). The dependence of this repulsive
force on r is also shown schematically in Fig. 8.5. The total energy of the crystal,
the lattice energy U, is given by summing equations (8.8) and (8.13) and
differentiating with respect to r to find the maximum U value and equilibrium
interatomic distance, r.; i.e.

2
u_ _€Z.Z NA B{]v 314
r r
‘Therefore,
dU e€2Z.Z_NA nBN
& — At (8.15
When

du
5 =0
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_-Born repulsive force
o
Z#~ \ Net coulombic
attractive force
Fig. 8.5 Lattice energy (dashed lin€) of ionic
crystals as a function of internuclear
separation
then ) .
B=e22+Z_Ar"“l (8.
n
and therefore o
U=—e__———Z+Z-NA<1—1> 8.1
r. n

The dashed line in Fig. 8.5 shows schematically the variation of U with r a

gives the minimum U value when r = Te- . ‘ .
For most practical purposes, equation (8.17) is entirely satisfactory, but

more refined treatments certain modifications are made:

(a) The Born repulsive energy term is better represented by an exponenti
function:

—T. o
V=Bexp| — (8.18)
p( b )

where p is a constant, typically 0.35. When r is small (r <€ re?, gqu.ations (8. )
and (8.18) give very different values for V, but for reahs.tlc 1ntera'tom ‘
distances, i.e. r ~r,, the two values are similar. Use of equation (8.18) in the}
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expression for U gives the Born—Mayer equétion:

2
v=-22ef 00 Z+Z-AN<1—£’-> (8.19)

r, r,

(b) The zero point energy of the crystal should be included in the calculation of
U. This is equal to 2.25hv, , where v, is the frequency of the highest
occupied vibrational mode in the crystal. Its inclusion leads to a small
reduction in U.

() Van der Waals attractive forces exist between ions due to induced dipole—
induced dipole interactions between them. These are of the form NC/r and
lead to an increase in U.

A more complete equation for U, after correcting for these factors, is

_Ae’Z,Z N
r

U= + BNe™"° — CNr= 4 2.25Nhv,,__ (820

Typical values for these four terms, in kilojoules per mole, are (from Greenwood):

Substance NAe’Z,Z_r~' NBe™" NCr=®  225Nhv, U
NaCl — 8594 98.6 ~ 121 7.1 — 7658
MgO — 4631 698 — 6.3 18.4 — 3921

from which it can be seen that the Born repulsive term contributes 10 to 15 per
cent to the value of U whereas the zero point vibrational and van der Waals terms
contribute about 1 per cent each and, being of opposite sign, tend to cancel each
other out. For most purposes, therefore, we can use the simplified equation
(8.17); let us consider each of the terms in equation (8.17) and evaluate their
significance. )

The magnitude of U depends on six parameters A, N, e, Z, n and r,, four of
which are constants for a particular ionic structure type. This leaves just two
variables, the charge on the ions, Z ., Z _, and the internuclear separation, r,. Of
the two, the charge is by far the most important since the value of the product
(Z,Z_) is capable of much larger variation than is r,. For instance, a material
with divalent ions should have a lattice energy that is four times as large as an
isostructural crystal with the same r, but containing monovalent ions (compare
alkaline earth oxides and alkali halides, in the above table). For a series of
isostructural phases with the same Z values but increasing r,, a decrease in U is
expected (e.g. alkali fluorides, alkaline earth oxides with NaCl structure). A
sclection of lattice energies for materials with the rock salt structure and showing
these two trends is given in Table 8.6.

Since the lattice energy of a crystal is equivalent to its heat of dissociation, a
correlation exists between U and the melting point of the crystal (a better
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Table 8.6 Some lattice energies (kJmol™%). (Data from
Ladd and Lee, 1963)

MgO 3938 LiF 1024 NaF 911
CaO 3566 LiCl 861 KF 815
SrO 3369 LiBr 803 RbF 777
BaO 3202 Lil 744 CsF 748

correlation may be sought between U and the sublimation energy, but such data
are rarely available). The effect of (Z, Z _) on the melting point is shown by the §
refractoriness of the alkaline earth oxides (m.p. of CaO = 2572 °C) compared with |
the alkali halides (m.p. of NaCl = 800 °C). The effect of r, on melting points may ]‘::‘
be seen in series such as: b

MgO(2800°C),  CaO(2572°C) and  BaO(1923°C)

8.2.6 Kapustinskii’s equation

Kapustinskii (1956) noted an empirical increase in the value of the Madelung
constant, A, as the coordination number of the ions in the structure increased,e.g. 3
in the series ZnS, NaCl, CsCl(Table 8.5). Since, for a particular anion and cation,
r. also increases with coordination number (e.g. Fig. 8.3), Kapustinskii proposed A
a general equation for U in which variations in 4 and r, are auto-compensated.
He suggested using the rock salt value for A and octahedral ionic radii 3
(Goldschmidt) in calculating r, ; substituting r, =r. +r,,p =0.345,4 = 1.745and
values for N and e into equation (8.19) gives the Kapustinskii equation:

y_12005VZ.Z (| 0345
B rC+r8 rc+ra

(8.21)"" |

> kJmol !

where V is the number of ions per formula unit (two in NaCl, three in PbF,, etc.).
This formula may be used to calculate the lattice energy of any known of
hypothetical ionic compound and in spite of the assumptions involved, the
answers obtained are surprisingly accurate. : '

The Kapustinskii equation has been used to successfully predict the stabl
existence of several previously unknown compounds. In cases where U is know
from Born-Haber cycle calculations (see later), it has been used to derive value
for ionic radii. This has been particularly useful for complex anions, e.g. SO,%",
PO, ", whose effective size in crystals is difficult to measure by other means

Table 8.7 Thermochemical radii (A) of complex anions.
(Data from Kapustinskii, 1956)

BF; 228 CrO2~ 240 10; 2.49
SO2- 230 MnO; 240 MoO} 254
ClO; 236  BeF; 245 SbOZ~ 260
PO~ 238 AsO}~ 248 BiO}™ 268
OH~ 140 0% 180 CO2~ 185
NO; 155 CN- 182 NO;  1.89
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Radii determined in this way are known as thermochemical radii and some values
are given in Table 8.7. It should be noted that radii for non-spherical ions such as
CNT represent gross simplifications and are only really applicable to other lattice
energy calculations.

8.2.7 The Born-Haber cycle and thermochemical calculations

The lgttice energy of a crystal is equivalent to its heat of formation from one
mole of its ionic constituents in the gas phase:

Na*(g) + Cl (g > NaCl(s)y AH=U

It cannot be measured experimentally. However, the heat of formation of a
crystal, AH , can be measured relative to the reagents in their standard states:

Na(s) + 3Cl(g) = NaCls))y AH=AH,

AH, may be related to U by constructing a thermochemical cycle known as a
Born—Haber cycle, in which AH ; is given by the summation of energy terms in a
hypothetical reaction pathway. For NaCl, the individual steps in the pathway,
commencing with the elements in their standard states, are:

Sublimation of solid Na AH=S
Ionization of gaseous Na atoms  AH =1IP
Dissociation of Cl, molecules AH=1D
Formation of the Cl™ ion AH =EA
Coalescence of gaseous ions to AH=U

give crystalline NaCl

Addition of these five terms is equivalent to forming crystalline NaCl from solid
Na and Cl, molecules, as shown:

Nag(s) +  1ClL( AH, NaCl(s)
1D ] v
s Cllp —EAar (g Na*(g)
Na(g) 1P

From Hess’ Law,

AH,=S+iD+IP+EA+U (8.22)

Applications. The Born—Haber cycle and equation (8.22) have various uses:

(1) Six enthalpy terms are present in equation (8.22). If all six can be determined
independently for a particular compound, then the cycle gives a check on the
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(b)

©

(d

internal consistency of the data. The values for NaCl are as follows:

S 109 k) mol ™!
P 493.7kJ mol !
iD 121 kJ mol ~*
EA —356kJmol !
U —764.4kJmol !
AH; —4109kJmol ™!

Summation of the first five terms gives a calculated H; of —396.7kJmol ™,
which compares reasonably well with the measured AH; value of §
—4109kJmol 1. 4
If only five of the energy terms are known, then the sixth may be evaluated 2
using equation (8.22). An early application ( ~ 1918) was in the calculation of
electron affinities, for which data were not then available. :
The possible stability of an unknown compound may be estimated. It is-
necessary to assume a structure for the compound in order to calculate U and ~‘_‘
while there are obviously errors involved, e.g. in choosing 7., these are usually |
unimportant compared with the effect of some of the other energy terms
involved in equation (8.22). Having estimated U, AH; may then be calculated.
If AH, is large and positive then this explains why the compound is"
unknown—it is unstable relative to its elements. If AH(calc)) is negative,
however, it may be worth while to try and prepare the compound under §
certain conditions. Examples are given in Section 8.2.8. !
Differences between values of lattice energies obtained by the Born-Haber
cycle using thermochemical data and theoretical values calculated from an‘
ionic model of the crystal structure may be used as evidence for non-ionic §
bonding effects. Data for the silver halides (Table 8.8) and for thallium ang §
copper halides (not given) show that the differences between the two lattice§
energies are least for the fluorides and greatest for the iodides. This is attributed?{-
to the presence of a strong covalent contribution to the bonding in the iodides;
which leads to an increase in the values of the thermochemical lattice energyj‘
A correlation also exists between the insolubility of the Ag salts, especially!
Agl, in water and the presence of partial covalent bonding. Data for the}
corresponding alkali halides show that the differences between thermochemi-}}
cal and calculated lattice energies are small and indicate that the ionic
bonding model may be applied satisfactorily to them.

While covalent bonding is present in, for example, AgCl and AgBr, ag
evidenced by the lattice energies, it is not strong enough to change the crysta !
structure from that of rock salt to one of lower coordination number. Agh]
does have a different structure, however; it is polymorphic and can exist in at]
least three structure types, all of which have low coordination numbers;
usually four. Changes in structure type and coordination number due toj
increased covalent bonding are described in Section 8.1.2. Y
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Table 8.8 Lattice energies (kJ mol™Y) of some Group I halides.
(Data from Waddington, 1959)

Ucalc UBorn — Habe: A U
AgF 920 953 33
AgCl 832 903 7
AgBr 815 895 80
Agl 777 882 105

(¢) Certain transition metals have crystal field stabilization energies due to their
d electron configuration (Section 8.6.1.1) and this gives an increased lattice
energy in their compounds. For example, the difference between experimental
and calculated lattice energies in CoF, is 83kJmol~*, which is in fair
agreement with the CFSE value calculated for the high spin state of Co in
CoF, of 104 kJ mol ~*. Tons which do not exhibit CFSE effects are those with
configurations d° (e.g. Ca?*), d° high spin (e.g. Mn**) and d'°® (e.g. Zn*"). A
further discussion is given in Section 8.6.1.1.

() The Born-Haber cycle has many other uses, e.g. in solution chemistry to
determine energies of complexation and hydration of ions. These usually
require a knowledge of the lattice energy of the appropriate solids, but since
these applications do not provide any new information about solids, they are
not discussed further.

8.2.8 Stabilities of real and hypothetical compounds

8.2.8.1 Inert gas compounds

One may ask, is it worth while trying to synthesize, for example, ArCl1? Apart
from AH,, the only unknown in equation (8.22) is U. Suppose that hypothetical
ArCl had the rock salt structure and the radius of the Ar* ion is between that of
Na* and K*. An estimated lattice energy for ArCl is, then, —745kJmol ™!
(NaCl = — 764.4; KCl= —701.4). Substitution in equation (8.22) gives, in
kilojoules per mole:

S 4D
0 121

1P
1524

EA
— 356

U AHgcalc)
— 745 +544

from which it can be seen that ArCl has a large positive heat of formation and
would be thermodynamically unstable, by a large amount, relative to the
clements.

Such a calculation also tells us why ArClis unstable and cannot be synthesized.
Comparing the calculations for ArCl and NaCl, it is clear that the instability of
ArCl is due to the very high ionization potential of argon (stability is strictly
governed by free energies of formation, but AS is small and hence AG =~ AH). The
heats of formation calculated for several other hypothetical compounds are given
in Table 8.9.
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Table 8.9 Enthalpies of formation (kJ mol™") of some hypothetical (*) and real compounds

HeF*  +1066 NeCl*  +1028 CsCli  +213  Cul, - 21
AtF*  + 418 NaCl  — 411  CsF} —125  CuBr, —142
XeF* 4+ 163  MgCl* - 125 Agl} +280  CuCl, —217
MgCl, — 639 AICI* — 188 AgCl, + 96 CuF, ~ 890
NaCl* +2144 AICl, — 694  AgF, — 205

There is now a large number of inert gas compounds known, following on from ¢
the preparation of XePtF ¢ by Bartlett in 1962. Consideration of lattice energies
and enthalpies of formation led Bartlett to try and synthesize XePtFq by direct
reaction of Xe and PtF, gases. He had previously prepared O,PtF as an ionic N
salt,(0,) ¥ (PtF,) ", by reacting (by accident) O, with PtF¢. Froma knowledge of
the similarity in the first ionization potentials of molecular oxygen: i
(1176 kI mol~*) and xenon (1169kJmol '), he reasoned, correctly, that the . }
corresponding xenon compound should be stable.

8.2.8.2. Lower and higher valence compounds

Consider alkaline earth compounds. In these, the metal is always divalent.
Since a great deal of extra energy is required to doubly ionize the metal atoms, it is
reasonable to ask why monovalent compounds, such as MgCl, do not form. Data_
in Table 8.9 show that MgCl is indeed stable relative to the elements (AH (calc) =
— 125kJ mol~1!) but that MgCl, is much more stable (AH = — 639kJ mol ™),
This is shown by the following sequence: :

- 2MgCl _
2Mg + Clz///zio/‘v & %Mg + MgCl,
— 639 .

In any attempt to synthesize MgCl, attention should be directed towards keeping
the reaction temperature low and/or isolating the MgCl product, in order to.
prevent it from reacting further or disproportionating. Similar trends are
observed for other hypothetical compounds such as ZnCl, Zn, 0, AlCl and AlCl
From a consideration of the factors that affect the stability of compounds, th
following conclusions may be drawn about compounds with metals in unusual
oxidation states:

(a) The formation and stability of compounds with lower than normal valence
states appears to be favourable when (i) the second, and higher, ionization g
potentials of the metal are particularly high and (ii) the lattice energy of the |
corresponding compounds with the metal in its normal oxidation state i
reduced. ‘

(b) Conversely, in order to prepare compounds in which the metal has a higher
than normal oxidation state and in which it is probably necessary to break IA
into a closed electron shell, it is desirable to have (i) low values for the second " §
(or higher) ionization potential of the metal atoms and (ii) large lattice
energies of the resulting higher valence compounds. ‘ k

1

o
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As examples of these trends, calculations for the alkaline earth monohalides
show that while all are unstable relative to the dihalides, the enthalpy of
disproportionation is least in each case for the iodide (U yy,) < U gup;,)> €1C.—
effect a, ii). Higher valence halogen compounds of the Group I elements are most
likely to occur with caesium and the copper subgroup elements (effect b, i), in
combination with fluorine (effect b, ii). Thus, from Table 8.9, all caesium
dihalides, apart from CsF,, have positive AH, values and would be unstable.
CsF, is stable in principle, with its negative AH; value, but has not been prepared
because its disproportionation to CsF has a large negative AH:

— 125 CsF — 405
Cs+F2// B — ) S ) 2

—530

For the silver dihalides, AH; becomes less positive and finally negative across the
series Agl, to AgF,. This again shows the effect of r, on U and hence on AH,
(effect b, ii). Unlike CsF,, AgF, is a stable compound since AgF and AgF, have
similar enthalpies of formation and therefore the disproportionation enthalpy of
AgF, (to AgF +1F,) is ~ zero.

The copper halides are particularly interesting. The divalent state of copper, in
which the d° shell of copper is broken into, is the most common state and again
the dihalides show decreasing stability across the series CuF, to Cul, (Table 8.9):
Cul, appears not to exist and its calculated AH, is barely negative. On the other
hand, in the monovalent state the situation is reversed and all the halides apart
from CuF are known. CuF is calculated to be stable relative to the elements but
not relative to CuF,:

— 2CuF
2Cu+F, _———

S
—+CuF, + Cu

— 127
The above examples show that several factors affect the formulae and stability
of compounds: ionization potentials, lattice energies (via internuclear distances
and the charges on ions) and the relative stability of elements in different
oxidation states. Often a delicate balance between opposing factors controls the
stability or instability of a compound and, as with the copper halides, detailed
calculations are needed to assess the factors involved.

8.2.9 Polarization and partial covalent bonding

Covalent bonding, partial or complete, occurs when the outer electronic
charge density on an anion is polarized towards and by a neighbouring cation.
The net effect is that an electron pair which would be associated entirely with the
anion in a purely ionic structure is displaced to occur between the anion and
cation such that the electron pair is common to both. In cases of partial covalent
bonding, some of the electron density is common to both atoms but the rest is still
associated with the more electronegative atom.

The occurrence of partial covalent bonding in an otherwise ionic structure may
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sometimes be detected by abnormally large values of the lattice energy
(Section 8.2.7). In other cases, it is clear from the nature of the structure and the
coordination numbers of the atoms that the bonding cannot be purely ionic
(Section 8.1.2). Until comparatively recently, it has been difficult to quantify the
degree of partial covalence in a particular structure, although one has intuitively
felt that most so-called, ionic structures must have a considerable degree of ‘
covalent character. Two new approaches which have had considerable success
are the coordinated polymeric model of Sanderson and the ionicity plots of |
Mooser and Pearson. o

8.3 Coordinated polymeric structures—Sanderson’s model

A fresh approach to the theory and description of non-molecular crystal
structures has been developed by Sanderson (1967, 1976). Basically, he regards all
bonds in non-molecular crystal structures as being polar covalent. The atoms:
contain partial charges whose values may be calculated readily using a new scale! |
of electronegativities developed by Sanderson. From the partial charges, the |
relative contributions of ionic and covalent bonding to the total bond energy may 31
be estimated. Since all non-molecular crystals contain only partially charged 7
atoms, the ionic model represents an extreme form of bonding that is not attained |
in practice. Thus in, for example, KCl, the charges on the atoms are calculated to |
be + 0.76 instead of + 1.0 for a purely ionic structure. ' 4

The essential features of this new approach to non-molecular solids, whick }
is part of a more general and widely applicable theory of bonding, are as' §
follows. The features of an atom which control its physical and chemical'
properties are (a) its electronic configuration and (b) the effective nuclear charge
felt by the valence electrons. It is recognition of the importance of the latter effect i
that provides the starting point for Sanderson’s theory. §

8.3.1 Effective nuclear charge

The effective nuclear charge of an atom is the positive charge that would be felg; |
by a foreign electron on arriving at the periphery of the atom. Atoms are, of
course, electrically neutral overall but, nevertheless, the valence electrons of 3“%
atom are not very effective in shielding the outside world from the positive charge }
on the nucleus of the atom. Consequently, an incoming electron (e.g. an electron}’}
that belongs to a neighbouring atom and is coming to investigate the possibility’
of bond formation) feels a positive, attractive charge. Were this not the case and
the surface of an atom was completely shielded from the nuclear charge, the
atoms would have zero electron affinity and no bonds, ionic or covalent, wou
ever form.

The effective nuclear charge is greatest in elements which have a single vacancy,
in their valence shell, i.e. in the halogens. In the inert gases, the outermost electromj
shell is full and no foreign electrons can enter it. Consequently, incomingy
electrons would have to occupy vacant orbitals which are essentially ‘outside’ the.
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atom and the effective nuclear charge experienced in such orbitals would be
greatly reduced. Calculations of ‘screening constants’ were made by Slater who
found that outermost electrons are much less efficient at screening nuclear charge
than are electrons in inner shells. The screening constants of outermost electrons
are calculated to be approximately one third; this means that for each unit
incr‘ease in atomic number and positive nuclear charge across the series, e.g.
sodium to chlorine, the additional positive charge is screened by only one third.
Therefore, the effective nuclear charge increases in steps of two thirds and the
valence electrons experience an increasingly strong attraction to the nucleus on
going from sodium to chlorine. Similar effects occur throughout the periodic
table: the effective nuclear charge is small for the alkali metals and increases to a
maximum in the halogens.
Many atomic properties may be correlated with effective nuclear charge:

(a) Ionization potentials gradually increase from left to right across the periodic
table.

(b) Electron affinites become increasingly negative in the same direction.

(c) Atomic radii progressively decrease from left to right.

(d) Electronegativities increase from left to right.

Let us consider two of these properties, atomic radii and electronegativities, in
more detail.

8.3.2 Atomic radii

Atomic radii vary considerably for a particular atom depending on bond type
and coordination number and many tabulations of radii are available; indeed,
the subject of ionic radii is still a controversial subject. Fortunately, however, the
non-polar covalent radii of atoms can be measured accurately and represent a
point of reference with which to compare other radii. Thus the atomic, non-polar
covalent radius of carbon, given by half the C—C single bond length is constant
4t 0.77 A in materials as diverse as diamond and gaseous, paraffin hydrocarbons.
Non-polar radii of atoms are listed in Table 8.10; from these radii, it is possible,
using Sanderson’s method, to estimate the effect that partial charges on atoms
have on their radii. The general trends are that with increasing amounts of partial
positive charge, the radii become smaller (i.e. as electrons are removed from the
valence shell, but with the nuclear charge unchanged, so the remaining valence
shell electrons feel a stronger attraction to the nucleus and the atom contracts).
Conversely, with increasing negative charge on the atom, the radius becomes
larger. Sanderson developed a simple, empirical formula to quantify the variation

of radius, r, with partial charge:
r=r,— B} (8.23)

where r, i_s the non-polar covalent radius, B is a constant for a particular atom
and ¢ is its partial charge. B values are also given in Table 8.10. The partial
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Table 8.10 Some electronegativity and size parameters of atoms. (After Sanderson,
1

976)

Element s r(A) B(solid) AS, r(A)
H 3.55 0.32 3.92

Li 0.74 1.34 0.812 1.77 0.53
Be 1.99 0.91 0.330 293 0.58
B 2.93 0.82 2.56

C 3.79 0.77 4.05

N 4.49 0.74 4.41

o 5.21 0.70 4.401 4.75 1.10
F 575 0.68 0.925 499 1.61
Na 0.70 1.54 0.763 1.74 0.78
Mg 1.56 1.38 0.349 2.60 1.03
Al 2.22 126 . 310

Si 2.84 1.17 3.51

P 3.43 1.10 3.85

S 4.12 1.04 0.657 422 1.70
Cl 4.93 0.99 1.191 4.62 2.18
K 0.42 1.96 0.956 1.35 1.00
Ca 1.22 1.74 0.550 2.30 1.19
Zn 2.98 3.58

Ga 3.28 377

Ge 3.59 1.22 3.94

As 3.90 1.19 4.11

Se 4.21 1.16 0.665 427 1.83
Br 4.53 1.14 1242 4.43 2.38
Rb 0.36 2.16 1.039 1.25 1.12
Sr 1.06 191 0.429 2.14 1.48
Ag 2.59 1.50 0.208 129
Cd 2.84 1.46 0.132 335 1.33
Sn 3.09 1.40 3.16,3.66

Sb 3.34 1.38 3.80

Te 3.59 1.35 0.692 3.94 2.04
I 3.84 1.33 1.384 4.08 271
Cs 0.28 2.35 0.963 1.10 1.39
Ba 0.78 1.98 0.348 1.93 1.63
Hg 293 3.59

Tl 3.02 1.48 2.85

Pb 3.08 1.47 3.21,3.69

Bi 3.16 1.46 3.74

charges on atoms cannot be measured directly but may be estimated from

Sanderson’s electronegativity scale, as follows. :

8.3.3 Electronegativity and partially charged atoms

The electronegativity of an atom is a measure of the net attractive for
experienced by an outermost electron interacting with the nucleus (Gordy, Allred

and Rochow). The concept of electronegativity was originated by Pauling as & ‘.
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parameter that would correlate with the observed polarity of bonds between
unlike atoms. Atoms of high electronegativity attract electrons (in a covalent
bond) more than do atoms of low electronegativity and, hence, they acquire a
partial negative charge. The magnitude of the partial charge depends on the
initial difference in electronegativity between the two atoms. The difficulty in
working with electronegativities in the past has been that electronegativity has
not had a precise definition and, therefore, it has not been possible to use an
absolute scale of electronegativities and make accurate calculations. Pauling
observed a correlation between the strengths of polar bonds and the degree of
polarity in the bonds. He proposed that bond strengths are a combination of(a) a
homopolar bond energy and (b) an ‘extra ionic energy’ due to bond polarity and,
hence, electronegativity difference. He then used this correlation between polarity
and -extra ionic energy to establish his scale of electronegativities. These ideas
have since been extended and modified by Sanderson to permit quantitative
calculations of bond energies to be made for a wide variety of compounds.
However, Sanderson used a different method to derive a scale of electro-
negativities. Since electronegativity is a measure of the attractive force between

the effective nuclear charge and an outermost electron, it is related to the
compactness of an atom. He used the relation:

D

S=% (8.24)

a
to evaluate the electronegativity, S, in which D is the electron density of the atom
(given by the ratio of atomic number: atomic volume) and D, is the electron
density that would be expected for the atom by linear interpolation of the D
values for the inert gas elements. The electronegativity values so obtained are
listed in Table 8.10, with some minor modifications made by Sanderson.

An important contribution to our understanding of bond formation is the
principle of electronegativity equalization proposed by Sanderson. It may be
stated: “When two or more atoms initially different in electronegativity combine
chemically, they become adjusted to the same intermediate electronegativity
within the compound.’ It is found in practice that the value of the intermediate

clectronegativity is given by the geometric mean of the individual
clectronegativities of the component atoms, e.g. for NaF:

Sy = /SxaSp = 2.006 (8.25)

This means that in a bond between unlike atoms, the bonding electrons are
preferentially and partially transferred from the less electronegative to the more
clectronegative atom. A partial negative charge on the more electronegative atom
results whose magnitude is defined, by Sanderson, as follows: ‘Partial charge is
defined as the ratio of the change in electronegativity undergone by an atom on
bond formation to the change it would have undergone on becoming completely
ionic with charge +or — 1.

In order to make calculations of partial charges, a point of reference was
necessary and for this it was assumed that the bonds in NaF are 75 per cent ionic;
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this assumption appears to have been well justified by subsequent developments.
Further, it was necessary to assume that electronegativity changes linearly with
charge. It can then be shown that the change in electronegativity, AS,, of any
atom on acquiring a unit positive or unit negative charge is given by

_ AS,=2.08./S (8.26)
Partial charge, 6, may therefore be defined as
AS
0=—or .
AS, 8.27

where AS = S — S,. Values of AS_ are also given in Table 8.10. :

Returning now to the radii of partially charged atoms, the problem in assigning
individual radii to atoms or ions has been the question of how to divide an,
experimentally observed internuclear distance into its component radii. Many/
methods have been tried and various tabulations of radii are available. All of §
them are additive in that they correctly predict bond distances. The method 3
adopted by Pauling (and Sanderson) has been to divide the experimental
internuclear distance in an isoelectronic ‘ionic’ crystal, such as NaF, according to
the inverse ratio of the effective nuclear charges on the two ‘ions’. The effective |
nuclear charges can be calculated from the screening constants. From a |
knowledge of the partial charges on the atoms and assuming that radii change §
systematically with partial charge (according to the relationr = r_ — BJ), the ionic i
radii of Na* and F~ may be calculated ; these then serve as a point of reference for" 1
calculating radii of other ions in materials that are not isoelectronic. In Table 8.10
are listed the radii of singly charged ions in the solid state calculated by the above
method ; also given are B and r, data to enable the radii of partially charged atoms;
to be calculated and electronegativity data S, AS, to enable the partial charges, 5, |
to be calculated. ‘

Let us consider the use of these data for one example, Bal,. From Table 8.1
Sg, =0.78 and S, =3.84; the intermediate electronegativity, S, is given b
S, = 3/Sp.S% =2.26. Therefore, for barium, AS=2.26 — 0.78 =1.48 and for
iodine, AS =3.84 — 226 = 1.58. The values of AS_ are 1.93 (Ba) and 4.08(I),;
Hence 85, = 1.48/1.93 =0.78 and &; = 1.58/4.08 = —0.39, i.e. Bal, is ~ 39 per, |
cent ionic, 61 per cent covalent (using the 6, value). The radii of the partially
charged atoms may now be calculated. For barium, r, = 1.98, B=10.348 and é is
calculated to be 0.78; hence ry, =r, — BS = 1.71A. For iodine, r, =133, B= §
1384 and 8= —0.39; hence r, = 1.87A. Therefore, the barium—iodine dis-
tance is calculated to be 1.87 + 1.71 = 3.58 A, which compares very well with t
experimental value of 3.59 A ‘

Using the above methods, Sanderson has evaluated the partial charges anf);lr ]
atomic radii in a large number of solid compounds. For example, data are given, ‘;
in Table 8.11 for a number of mono- and divalent chlorides; the charge on t i
chloride atom varies from — 0.21 in CdCl, to — 0.81 in CsCl and at the same time ' §
the calculated radius of the chlorine atom varies from 1.24 to 1.95 A These‘;‘

vy )
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Table 8.11 Partial charge and radius of the
chlorine atom in some solid chlorides

Compound —ba ra@®)
cdcl, 0.21 124
BeCl, 0.28 126
CuCl 0.29 1.34
AgCl 0.30 1.35
MgCl, 0.34 139
CaCl, 0.40 147
StCl, 0.43 1.50
BaCl, 049 1.57
LiCl 0.65 1.76
NacCl 0.67 1.79
KCl 0.76 1.90
RbCl 0.78 1.92
CsCl 0.81 1.95

compare with a non-polar covalent radius of 0.99 A and an ionic radius of 2.18 A
(Table 8.10). While these radii and partial charges may not be quantitatively
correct, because some of the assumptions involved in their calculation are rather
empirical, they nevertheless appear to be realistic. Most of the compounds in
Table 8.11 are normally regarded as ionic, and if the data are in any way correct,
they clearly show that it is unrealistic and misleading to assign a radius to the
chloride ion which is constant for all solid chlorides.

A similar but more extensive list of the partial charge on oxygen in a variety of
oxides in given in Table 8.12, where values cover almost the entire range between
0 and — 1. Although oxides are traditionally regarded as containing the oxide

Table 8.12 Partial charge on oxygen in some solid oxides

Compound — 6, Compound — o Compound — 6o Compound —do
Cu,0 0.41 HgO 027 Ga,0, 019 CO, 0.11
Ag,0 0.41 ZnO 029 T1,0, 021 GeO, 0.13
Li,O 0.80 CdO 0.32 In,O, 0.23 S$nO, 0.17
Na,O 0.81 CuO 032 B,0, 024 PbO, 0.18
K,O 0.89 BeO 036 AlLO, 0.31  SiO, 0.23
Rb,O 0.92 PbO 036  Fe,0, 0.33  MnO, 0.29
Cs,0 094 SnO 037 Cr,0, 037 TiO, 0.39

FeO 040  Sc,0, 047 ZrO, 0.44

CoO 040 Y,0, 0.52  HfO, 045

NiO 040 La,0O, 0.56

MnO 041

MgO 0.50

CaO 0.56

SrO 0.60

BaO 0,68




296
jon, 027, the calculations show that the actual charge carried by an oxygen never
exceeds — 1 and is usually much less than — 1. .

These ideas and calculations on partial charges which have been developed by
Sanderson enable many correlations to be made between partial charge and
chemical properties. To give one example, the acidic, amphoteric and basic A
properties of oxides correlate nicely with the partial charge on the oxide ion and
the changeover in behaviour occurs with a partial charge of ~ — 0.30. We are i
concerned here, however, with the structures of solids. Since the ionic model _‘
appears to be inappropriate or only partially correct for most solids, Sanderson
proposed the coordinated polymeric model for solids. This is essentially a blend of
the two extreme forms of bonding: ionic and covalent.

8.3.4 Coordinated polymeric structures

Fromi the principle of electronegativity equalization, electrons in a hypotheti-
cal covalent bond are partially transferred to the more electronegative atom. Thi
removal of electrons from the electropositive atom leads to an increase in its’;
effective nuclear charge, decrease in its size and hence an increase in its effective
electronegativity. Likewise, as the electronegative atom acquires electrons, so its
ability to attract still more electrons diminishes and its electronegativity
decreases. In this way the electronegativities of the two atoms adjust themselves
until they are equal. This principle of electronegativity equalization may be
applied equally to diatomic gas molecules, in which only one bond is involved,.o.
to three-dimensional solid structures in which each atom is surrounded by and
bonded to several others. This argument illustrates how covalent bonds that are
initially non-polar may become polar due to the electronegativity equalization
An alternative approach is to start with purely ionic bonding and consider how'}
the bonds may acquire some covalent character. In'an ionic structure, M* X7,
the cations are surrounded by anions (usually 4, 6 or 8). However, the cationg
have empty valence shells and are potential electron pair acceptors; likewis‘;‘,&
anions with their filled valence shells are potential electron pair donors. Thel
cations and anions therefore interact in the same way as do Lewis acids and§
bases: the anions, with their lone pairs of electrons, coordinate to the surroundi
cations. The strength of this interaction, and hence the degree of covale
bonding which results, is again related to the electronegativities of the two atoms
Thus electronegative cations such as AI3* are much stronger electron paﬁj
acceptors (and Lewis acids) than are electropositive cations such as K*. T '
coordinated polymeric model of structures proposed by Sanderson is based o
this idea of acid—base interactions between ions. It therefore forms a bridg

between the ionic and covalent extremes of bond type.

8.3.5 Bond energy calculations

In most solids, the bonds are a blend of covalent and ionic. For simplicity andj
convenience in calculations, it is possible to regard the bonds as being wholly§
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ionic for part of the time and wholly covalent for the remainder of the time. The
relative proportions of the two components are then directly related to the partial
charges on the atoms. In Pauling’s view of polar bonds, the ionic contribution to
the bond energy, due to the electronegativity difference between the atoms, is
regarded as adding to the energy of a 100 per cent covalent bond. Howe\;er
Sandgrsop argues that the ionic contribution replaces part of the covalent’
coptrlbutlon; since ionic bonds always have higher energy than covalent bonds
this automatically leads to an increasing bond energy with increasing bond
polarity.

Thg ionic contribution to bond energy may be calculated using the Born—Mayer
equation (8.19) of Section 8.2.5; the lattice energy for a purely ionic crystal is
calculated in this way and multiplied by the fractional ionic character of the
bonds. Covalent bond energies are estimated as follows.

For a homopolar, covalent bond between li
. ’ ike atoms, Sander
relation: erson proposed the

E=CrS (8.28)

between the_covalent bond energy, E, the electronegativity, S, and non-polar
covalent radius, r, of the atoms; C is an empirical constant. The value of C is the
same across, for example, the series, Li...F, for which a plot of E against (rS) is
showp in Fig. 8.6. The linearity of the plot was shown by the experimental data
for Li, Be, B and C; these values were obtained from the dissociation energies of
gas phase molecules such as Li,. By extrapolation, single bond energies of N, O
and F were t.hen estimated. It is known that the experimentally determined sin’gle
bond energies of these atoms, N, O and F, are anomalous, e.g. the F, bond

500 £
5
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Fig. 8.6 Plot of homopolar bond energy, E

against rS, the product of non-polar covalent’

radius, r, and Sanderson electronegativity, S. E

values for N, O and F are obtained by -
extrapolation
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dissociation energy is much less than expected by comparison with the values for
the other halogens. The experimental bond dissociation energies for O,N and F
are reduced by what Sanderson calls the ‘lone pair bond weakening effect’
(Section 8.3.6).

From Fig. 8.6 it is possible to estimate bond energies for these elements which
would be free from the lone pair bond weakening effect. Thus the value for
fluorine, F”, extrapolated from Fig. 8.6 is 466 kJ mol~ 1 whereas the experimental
value obtained from the dissociation of the F, molecule is only 165kJI mol ™.
Using a similar procedure, single covalent bond energies have been estimated for
most of the main group elements in cases where such data were not already
available.

The next step is to calculate the covalent bond energy, E, of a heteronuclear
bond. Sanderson used Pauling’s equation, but added a correction factor for bond  §
length: for a bond between atoms A and B, in a molecule, :

R,
E .= RV EppEgg

o

829 1

i.e. the bond energy is the geometric mean of the two homonuclear bond energies,
E,, and Egy, multiplied by theratio R/R, in which R, is the sum of the covalent '
radii (tabulated) and R, is the observed bond length. ;

For crystalline solids, a correction factor is needed for the total number of §
electron pairs, n, that are involved in the bonding. Thus, in gaseous NaCl "}
molecules, there is only one electron pair and one bond to be considered, whereas® '}
in crystalline NaCl each atom is coordinated to six others and, on the
coordinated polymeric model of bonding, there are four electron pairs to be
distributed over the six bonds around any particular atom. For most solid oxides 4
and halides on which calculations have been made, use of n= 4 gives good |
agreement between experimental and calculated bond energies. In some cases, %
especially with the smaller atoms, and for reasons which are not understood, it
appears necessary to use n=23 and occasionally n=6.

The total bond energy, E, of a crystalline solid is given by the sum of the ioni¢
and covalent contributions, i.e. '

s

tU
f

where t_and t; are the fractional covalent and ioniccharacters, respectively, in the :
bonds. The term U/f is a modified lattice energy; part of the difficulty in making
bond energy calculations for ionic solids is that the energy required to completely §
dissociate the solid into the gas phase corresponds to the atomization energy of §
the solid. This is not the same as the lattice energy of the solid, which refers to the §
energy of the crystal relative to ions in the gas phase. However, by having a
correction factor, f, in equation (8.30) which is constant at f = 1{or halides and at §
f=0.63 for oxides, Sanderson obtained good agreement between experimental |
and calculated bond energies using equation (8.30). Some examples are given in |
Table 8.13. ' ]

E=tEn+ (8.30) 4
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Table 8.13 Bond energies

Ecalc E exp
(kJmol™Y) (kJmol™Y)

Compound n — 0¥

Li,O 6 080 1172 1168
Na,O 4 080 851 - 881
K,O 4 084 777 791
Rb,0 4 086 762 743
Cs,0 4 090 721 723
BeO 4 042 1174 1175
MgO 4 050 1020 1040
CaO 4 057 1038 1061
SrO 4 060 1007 1002
BaO 4 067 958 982
LiF 3 074 869 852
NaF 3075 766 760
KF 4 084 736 735
RbF 4 086 711 710
CsF 4 090 688 688
BeF, 3 034 1462 1502
MgF, 4 041 1499 1471
CaF, 4 047 1546 1549
SrF, 4 050 1522 1534
BaF, 4 057 1532 1533

* Partial charge on anion.

8.3.6 Bond energies and structure

In qrder to illustrate how bond energy may influence the structure adopted by
a part.lcular compound some clear-cut examples are needed. Consider the long-
st'andmg ql.xestion mark over the enormous difference in the structure of CO, and
SIQZ. One is a gas, the other a high melting solid. And yet carbon and silicon are
adjacegt (?lerpents in Group 1V of the periodic table and are expected to show
many similarities in their physical and chemical properties. Clearly, CO, must be
more stable as a molecule that contains two carbon—oxygen double boznds than
as some other structure that contains four carbon—oxygén single bonds.

Although double bonds are stronger than single bonds they are not normally
regarded as being at least twice as strong; however, clearly, they must be so in the
case of CO,. Why should this be ? Sanderson’s calculations indicate the answer to
this and other questions, only a brief summary of which can be given here.

As mentioned in Section 8.3.5, the elements N, O and F exhibit the ‘lone pair
bond weakening effect’ such that their single bond energies are considerably less
than expected. The explanation that has previously been given is that the
presence of lone pairs on adjacent atoms causes a kind of steric hindrance and
h‘cnce repulsion between the atoms which leads to a weakening of the bond.
T‘nandcrsog argues that this explanation must be incorrect—e.g. the N—H bonds
in ammonia are also weakened but the hydrogen atom has no lone pairs—and that,
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instead, the lone pairs must act towards screening off the effective nuclear charge
of the atoms from the valence electrons. This leads to a reduction in bond energy
by effectively reducing the electronegativity of the atoms (equation 8.28). Using
correlations such as shown in Fig. 8.6, unweakened single bond energies were
estimated. For oxygen this value, E" 434kJmol "', isabout three times the value
of the oxygen—oxygen single bond energy determined experimentally from the
dissociation of H,0,, 142kJmol~ ! Further, the dissociation energy of oxygen

gas molecules, requiring cleavage of the double bond is 498 kJ mol ™.

Recognition of the lone pair bond weakening effect in N, O and F leads to
explanations of many phenomena:

(a) Oxygen is a diatomic gas whereas sulphur is a polymeric solid: one 0=0

double bond is stronger than two O—O single bonds. The lone pair bond )

weakening effect is much reduced in sulphur (and P,Cl, etc.), for which two i
single bonds are stronger than one double bond.
(b) Similarly, N, is a diatomic gas whereas P is a polymeric solid.

(¢) The bond dissociation energy of fluorine is much less than that of chlorine: !
here there is no possibility of forming double bonds and direct comparison - §
between the halogen single bond energies is possible. The reduced F—F bond i

energy accounts in large part for the high reactivity of fluorine:

(d) Carbon dioxide is a molecular gas whereas silica is a polymeric solid. Using

data on the electronegativities and double bond energies of carbon and '
oxygen, the total dissociation energy of CO, was calculated by Sanderson,
using the sequence of steps outlined above, to be 1608 kJ mol~*. This is in ‘
close agreement with the experimental atomization energy of CO,. On the
other hand, for a hypothetical polymeric structure containing four C——O‘ )
single bonds per carbon, the calculated dissociation energy is less, ‘
1413 kJ mol~!. Hence CO, prefers to exist as a triatomic molecule. (The i
dissociation energy of O, is 498 kJ mol™ 1. this value is also regarded as being i}
reduced, by the presence of one lone pair on each oxygen. The unweaken
double bond energy is estimated as 574kJ mol ! and hence the value per
oxygen atom, E”, is half, i.e. 287kJ mol~ 1)

For SiO,, the lone pair bond weakening effect is less important for tw
reasons: (i) the bond weakening effect influences only the covalent cont
bution and as silicon is more electropositive than carbon the Si—O bond
more ionic than the C—O bond; (i) silicon has vacant d orbitals which allo
partial double bonding to occur by donation of the lone pair of electrons-omy
oxygen. Hence the single bond energy of oxygen is less weakened when!
bonded to silicon than when bonded to carbon. For calculations on SiQ
Sanderson found it necessary to use the E” value of 287 kI mol ! in order
obtain a dissociation energy for polymeric SiO, of 1859 kI mol ™ 1 which was}
in good agreement with the experimental value. By contrast, calculations o]
the ‘SiO, molecule’ containing S0 double bonds gave a much smalier
dissociation energy, 1264 kJ mol~ ! Hence SiO, shows a clear preference for# A
polymeric structure with Si—O single bonds.
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8.3.7 Some final comments on Sanderson’s approach

ania;r;(:;r:r:hhas extef:nded his semi-empirical calculations on electronegativities
arges of atoms to the calculation of bond ies i i
Socton & 5 purgesofatoms & energies in polar materials
.3.6). siderable advance on what has b i i
other methods. However, it h i toeiations e
. ,1t has not been possible to make th 1 i
purely ab initio basis and the values i e oS on
€ of certain parameters have b
P ‘ . ‘ een chosen so as
o lgulzeugsz(ci)(: liigreenllentt ]la)etv:ieen experiment and calculation; one example is the n
covalent bond energy calculations on solid
ledges that his calculatio i ks o S
ns suffer from certain drawbacks and th i
extent, some of his arguments are cir  disadvantases appeas
, ¢ circular. However, these disad
to be more than outwei i , o of bondig ot
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r . g of bonding in solid
materials which has resulted from these calculations and in particulagr by the

quantization of concepts such as i
1 0 partial charge o ioniciti
electronegativity equalization. Be on atoms, bond lopicities and

8.4 Mooser—Pearson plots and ionicities

While the radius ratio rules a
he ppear to be rather unsatisfactory for predicti
:gd claz(plalqlng the structure adopted by, for instance, particular ZB co?npofrtll:ilsg
alternative approach by Mooser and Pearson (1959) has had considerable’

S . o
uccess. This approach focuses on the directionality or covalent character of

b .
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Fig. 8.7 Mooser—Pearson plot for AB compounds
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Mooser—Pearson plots, these two parameters are plotted against each othfer, as
shown for AB compounds in Fig. 8.7. The most striking feature of the Plot is tll:e
almost perfect separation of compounds into four groups correspondmg to the
structure: zinc blende (ZnS, B), wurtzite (ZnS, W), rock salt and CsCl. Similarly,
successful diagrams have been presented for other. formu_la t.ypes—AB 5, AB,, etc.
Of the four simple AB structure types, one’s intuitive feeling is tl'fat zinc blenc.le (Qr
sphalerite) is the most covalent and either rock §alt or QsCl is the .most ionic.
Mooser—Pearson plots present this intuitive feeling in dlagra.mn.latnc form.
The term ionicity has been used to indicate the degree of ionic chgracter in ?
bonds; in Fig. 8.7, ionicity increases from the bottom'left. to tbe top right of tge
diagram, as shown by the arrow. Thus it appears that' 1oplclty is not governed l-ly ;
electronegativity alone but also depends on the principal valc?nce sh'ell qf t ei |
atoms and hence on atomic size. There is a general trend _for highly directional
covalent bonds to be associated with lighter elements, 1. a.t the bqttom of
Fig. 8.7, and with small values of Ax, i.e. at the left-hand side o,f .Flg.' 8.7.7 ]
The fairly sharp crossover between the diff?r‘ent .‘str‘uc‘:t‘ure ﬁe_lds in Flg: 8.' !
suggests that for each structure type there are critical ionicities which place alimit 4
on the compounds that can have that particular structure.‘T_heoretlcal support - f
for Mooser—Pearson plots has come from the work of thllhps (1970) and van j
Vechten and Phillips(1970) who measured optical absqrpt}on spect‘ra of some AB
compounds and, from these, calculated electronegativities and ionicities. Tht;
spectral data gave values of band gaps, Eg (Chapter 14). For 1st')e1e<?tromc SEries O
compounds, e.g. ZnSe, GaAs, Ge, the band gaps have contributions frorrfl (a) Ca ]
homopolar band gap, E,, as in pure germanium and (b) a charge transfer, C,
between A and B, termed the ‘ionic energy’. These are related by !
El=El+ C? 8.3
E, and E, are measured from the spectra and hence C can be calculated. C is
reglated to the energy required for electron charge transfe1.' in a polar bo_nd ‘a.nd_ ‘;
hence is a measure of electronegativity, as defined by Pauling. A scale of ionicity i
has been devised:

b

2

el (831
E;

Ionicity, f; =
Values of f; range from zero(C = Oina homopolar covaleqt bond) to one (C = 1:31'
in an ionic bond) and give a measure of the fractional ionic character of a bpn
Phillips analysed the spectroscopic data for sixty-eight AB compounds w1.th eltheg‘
octahedral or tetrahedral structures and found that the compounds fall into two

itical ionicity, f;, of 0.785.
roups separated by a critical ionicity, fi, of o o
¢ The link between Mooser—Pearson plots and Phillips—Van Vechten ionicit

Ax (Mooser—Pearson) ~ C (Phillips)

7i (Mooser—Pearson) = E,, (Phillips)
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The explanation of the latter is that as the principal quantum number of an
element increases, the outer orbitals become larger and more diffuse and the
energy differences between outer orbitals(s, p, d and Jor f) decrease; the band gap,
E,, decreases until metallic behaviour occurs at E, = 0. Use of 11 gives the average
behaviour of anion and cation. The Phillips—Van Vechten analysis has so far
been restricted to AB compounds but this has provided a theoretical justification
for the more widespread use and application of the readily constructed Mooser—
Pearson plots. Further developments in this area of crystal chemistry are
anticipated; an enthusiastic and more detailed account is given by Adams (1974).

8.5 Bond valence and bond length

The structures of most molecular materials—organic and inorganic—may be
satisfactorily described using valence bond theory in which single, double, triple
and occasionally partial bonds occur between atoms. Difficulties rapidly arise,
however, when valence bond theory is applied to crystalline, non-molecular
inorganic materials, even though the bonding in them may be predominantly
covalent. This is because there are usually insufficient bonding electrons available
for each bond to be treated as an electron pair single bond. Instead, most bonds
must be regarded as partial bonds.

An empirical but nevertheless useful approach to describing such bonds has
been developed by Pauling, Brown, Shannon, Donnay and others and involves
the evaluation of bond orders or bond valences in a structure. Bond valences are
defined in a similar way to electrostatic bond strengths in Pauling’s electrostatic
valence rule for ionic structures (Section 8.2.2). As such, bond valences represent
an extension of Pauling’s rule to structures that are not necessarily ionic. Bond
valences are defined empirically, using information on atom valences and
experimental bond lengths; no reference is made, at least not initially, to the
nature of the bonding, whether it be covalent or ionic or some blend of the two.

Pauling’s electrostatic valence rule requires that the sum of the electrostatic
bond strengths between an anion and its neighbouring cations should be equalin
magnitude to the formal charge on the anion (equations 8.5 and 8.6). This rule
may be modified to include structures which are not necessarily ionic by replacing
(a) the electrostatic bond strength by the bond valence and (b) the formal charge
on the anion by the valence of that atom (valence being defined as the number of
clectrons that take part in bonding). This leads to the valence sum rule which
rclates the valence, V,, of atom i to the bond valence, b;;, between atom i and
neighbouring atom j; i.e.

Vi=Zbi3

J

Thus, the valence of an atom must be equal to the sum of the bond valences for all
the bonds that it forms. For cases in which b;; is an integer, this rule becomes the
familiar rule that is used for evaluating the number of bonds around an atom in
molecular structures, i.e. the valence of an atom is equal to the number of bonds

(8.33)
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that if forms (counting double bonds as two bonds, etc). In non-rpolectﬁ:l;r,
inorganic structures, however, integral bond valences are the exception ra

thafl?hg::ele?:if)static bond strength in Pauling’s rule is given simply by thehr'a}tllo lc1>f “;‘
cation charge: cation coordination number. Tl}us for structures 1n va k:c t Z ;,
cation coordination is irregular or the cation-amog bond; are not all of the samf |
length, only an average electrostatic bond strf:ngth is obtame.d. Qpe advar;t;ge oe
the bond valence approach is that each boqd 15 treqted as an individual arlz c?ni:o |
irregularities or distortions in coordination environments can be taken in |
ac?c?rn:.given pair of elements, an inverse correlation between bond vzlence andf ‘:
bond length exists, as shown in Fig. 8.8 for boan betvzleen (:lxygelﬁ an.wat;)\{ns od ,
the second row in their group valence states, L.€. Nal, Mg , Al St 1 an;
SVi, While each atom and oxidation (or valenge) s_tate has :ts own bond va tanceh ‘\;fj
bond length curve, it is a considerable simpliflca.txon th?.t un1ver§a1 curves1 stué:al 1
as Fig. 8.8 may be used for isoelectronic series gf ions. Varlpus analytical
expressions have been used to fit curves such as Fig. 8.8, including

RN\Y
b;= R

where R is the bond length and R, N are constants (R, is the Yalue of the bom2:l b
length for unit bond valence); for the elements represented by Fig. 8.8, R, =1.622

d N =4.290. ' .
anFrom Fig. 8.8, bond length clearly increases with decreasing bond valence and

since, for a given atom, bond valence inevitably decreases with increasing
> . . . .
coordination number, a correlation also exists between increasing coordinatio:

BOND
VALENCE
1.

[N T S W W S KD YORR" SO U Y SN T S
5 2.0 .2'5
BOND LENGTH (A)

T30

Fig. 8.8 Bond valence-bond length universal correlation curve
f01g bonds between oxygen and second row atoms: Na, Mg, Al Si,
P and S. (From Brown, 1978)
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number and increasing bond length. This correlation has already been presented,
in a slightly different form, in Fig, 8.3, in which the ionic radii of cations increase
with increasing coordination number. Since the data of Fig. 8.3 assume a
constant radius of the fluoride or oxide ion, the ordinate in F ig. 8.3 could be
changed from the ionic radius to the metal-oxygen bond length.

Curves such as Fig. 8.8 are important for several reasons, the most important
of which is that they lead to an increased rationalization and understanding of
crystal structures. They have several applications that are specifically associated
with the determination of crystal structures; for example:

(a) As a check on the correctness of a proposed structure, the valence sum rule
should be obeyed by all atoms of the structure to within a few per cent.

(b) To locate hydrogen atoms. Hydrogen atoms are often ‘invisible’ in X-ray
structure determinations because of the very low scattering power of
hydrogen. It may be possible to locate them by evaluating the bond valence
sums around each atom and noting which atoms (e.g. oxygen atoms in
hydrates) show a large discrepancy between the atom valence and the bond
valence sum. The hydrogen is then likely to be bonded to such atoms.

To distinguish between Al** and Si** positions in aluminosilicate structures.
By X-ray diffraction, AI** and Si** cannot be distinguished because of their
very similar scattering power, but in sites of similar coordination number they
give different bond valences, e.g. in regular MO, tetrahedra, Si—O bonds
have a bond valence of one but Al—O bonds have a bond valence of 0.75. Site
occupancies may therefore be determined using the valence sum rule and/or

by comparing the M—O bond lengths with values expected for Si—O and
Al—O.

(©

8.6 Non-bonding electron effects

In this section, the influence on structure of two types of non-bonding electrons
is considered: the d electrons in transition metal compounds and the s? pair of
clectrons in compounds of the heavy p-block elements in low oxidation states.
These two types of electrons do not take part in bonding as such, but nevertheless

cxert a considerable influence on the coordination number and environment of
the metal atom.

8.6.1 d Electron effects

In transition metal compounds, the majority of the d electrons on the metal
ntom do not usually take part in bond formation but do influence the
coordination environment of the metal atom and are responsible for properties
such as magnetism. For present purposes, basic crystal field theory (CFT) is
idequate to describe qualitatively the effects that occur. It is assumed that the
reader is acquainted with CFT and only a summary will be given here.
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8.6.1.1 Crystal field splitting of energy levels

In an octahedral environment, the five d orbitals on a transition metal atom ar;
no longer degenerate but split into two groups, th@ t,4 group of lower energ)t; ;::ls
the e, group of higher energy (Fig. 8.9a). If poss1t‘>le,. glectrons :)ccudgy ;)rms s |
singl;, according to Hund’s rule of maxim}lm multlphf:lty., For d Lo t ato e
ions, two possible configurations occur, giving low spin (LS)' and high spin X “
’ ion in Fig. 8.10. In these, the increased energy, A, 3

.
states; these are shown for a d’i : e th ltiplicity, §

; in an e, orbital, and hence maximize the muif1phic Y §
required to place an electron i . P, which arises |

) . . ray,
has to be balanced against the repulsive energy of pairing ene .
when two electrons occupy the same 5, orbital. The magnitude of A de.pendsA on
the ligand or anion to which the metal his bonded: for weak field anions,

igurati i 1d ligands. A}
nfiguration occurs, and vice versa for strong fie ;
e D e o the mo lar, to which row it belongs: generally}

also depends on the metal and, in particu

(a) OCTAHEDRAL

eneroey IELD G e o
6Dq
provemARN o4
d orbitals \\__ —— — tyg
dy &z Yyz
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Fig. 8.9 Splitting of d energy levels in (a) an octahedral and
(b) a tetrahedral field
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high spin,A <P
CFSE = 8Dq
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o

low spin,A>P
CFSE = 18Dq

Fig. 8.10 Low spin and high spin states for a d."
transition metal ion in an octahedral coordi-
nation environment
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Table 8.14 d Electron configuration in octahedrally coordinated metal atoms

Gain in
Number orbital
of Low spin, A> P. High spin, A< P  energy for
electrons Lo e b e, low spin  Example
1 1 1 V4+
2 1 1 1 1 le +’ V3 +
3 1 1 1 T 11 LANTS S
4 1 1 T 1 11 A Pt Mndt
5 o1 11 11 1 24 Mn’%,Fe’*
6 /! 1 11 1 24 Fe**,Co*
7 |1 | w11 1 A Co**
8 | | S T A | S | S | Ni?*
9 S S | | I S [ 1 S | Cu?*
10 L | S S 1 | A A 1A 1 Zn?*

A(5d) > A(4d) > A(3d). Consequently HS behaviour is rarely observed in the 4d
and 5d series. A values may be determined experimentally from electronic spectra.
The possible spin configurations for the different numbers of d electrons are given
in Table 8.14. '

The radii of transition metal ions depend on their d electron configuration, as
shown in Fig. 8.11(a) for the octahedrally coordinated divalent ions. With
increasing atomic number, several trends occur. First, there is a gradual, overall
decrease in radius as the d shell is filled, as shown by the dashed line that passes
through Ca?*, Mn?*(HS) and Zn?*. For these three ions, the distribution of d
electron density around the M2* ion is spherically symmetrical because the d
orbitals are either empty (Ca), singly occupied (Mn) or doubly occupied (Zn). The
gradual decrease in radius with increasing atomic number is associated with poor
shielding of the nuclear charge by the d electrons; hence a greater effective nuclear
charge is experienced by the outer, bonding electrons which results in a steady
contraction in radius with increasing atomic number. Similar effects occur across
any horizontal row of the periodic table as the valence shell is filled, but are
particularly well documented for the transition metal series.

For the other ions d! to d* and d° to d°, the d electron distribution is not
spherical. The shielding of the nuclear charge by these electrons is reduced even
further and the radii are smaller than expected. Thus, the Ti** ion has the
configuration (tzg)z, which means that two of the three ¢,  orbitals are singly
occupied. In octahedrally coordinated Ti?*, these electrons (which are non-
bonding) occupy regions of space that are directed away from the (Ti%* —anion)
uxes. Comparing Ti?>* with Ca2*, for instance, Ti?>* has an extra nuclear charge
of + 2 but the two extra electrons in the t,, orbitals do not shield the bonding
electrons from this extra charge. Hence, Ti—O bonds in, for example, TiO, are
shorter than Ca—O bonds in CaO due to the stronger attraction between Ti**
and the bonding electrons. This trend continues in V2*, Cr2*(LS), Mn2*(LS)
und Fe?*(LS), all of which contain only t,, electrons (Table 8.14). Beyond
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Fe2*(LS), the electrons begin to occupy e, orbitals“and these‘ elect_rons do Shlz:d’@
the nuclear charge much more effectively. The radii ther; Pegln to increase ag n
in the series Fe2*(LS), Co?*(LS), Ni?*, Cu?* and Zn . v

For the high spin ions a different trend is observeq. On passing f;:')n]ld' ih
Cr?*(HS) and Mn?*(HS), electrons enter the e, prbltals, thereby s iel m%r "
nuclear charge and giving rise to an increqsed radius. However, on passing ,c; )
Mn?2*(HS) to Fe?*(HS), Co?*(HS) and le * the additional electrons occupy ,' ]
orbitals and the radii decrease once again. !

Trivalent transition metal ions slflfow a lslir?xla(r: geari douto

i ever, the various effects that oc : .
(t?i:hlelrb;tc})ln?cv number and hence to the right+by one atom; thus, the 1op wit
the smallest radius is Co3*(LS) instead of Fe?*(LS).

d but of reduced magnitudﬂ"}i

ffectively transferred §
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So far, only octahedral coordination of transition metal ions has been
considered. Tetrahedral coordination is also quite common but a different energy
level diagram applies to the d electrons. A tetrahedral field also splits the d
orbitals into two groups, but in the opposite manner to an octahedral field. Thus,
three orbitals have higher energy d,,, d,, and d,, whereas the other two, d,,_ .
and d,, have lower energy (Fig. 8.9b).

It was mentioned in Section 8.2.7 that crystal field splitting of d orbitals in
transition metal ions may result in crystal field stabilization energies (CFSE) and
increased lattice energies of ionic compounds. For example, CoF, has the rutile
structure with octahedrally coordinated Co?*(d”) ions in which Co?* adopts the
high spin configuration (Fig. 8.10). The energy difference, A, between t,and e,
orbitals is set equal to 10 Dq and the t,, Orbitals are stabilized by an amount 4 Dq
whereas the e, orbitals are destabilized by an amount 6 Dq. Relative to the
situation of five degenerate orbitals without crystal field splitting (Fig. 8.9), the
crystal field stabilization energy of Co?* in HS and LS states may be calculated.
For the LS state, the CFSEis 6 x 4 Dg — | x 6 Dq = 18 Dq. For the HS state, the
CFSE is 5x4Dq—2 x 6 Dq=8Dq.

The occurrence of CFSE leads to an increased lattice energy. The value of the
CFSE calculated for Co®*(HS) in rutile is 104 kJ mol~!. This compares fairly
well with the value of 83kJmol ™! given by the difference between the lattice
energy determined from a Born—Haber cycle (2959 kJ mol ™~ !) and that calculated
using the Born—Mayer equation (2876 kJ mol ™ Y).

The lattice energies of the divalent fluorides of the first row transition elements,
determined from a Born-Haber cycle, are shown in Fig. 8.12. Similar trends are

Ca_Sc Ti

V Cr Mn Fe Co Ni Cu Zn
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T
©
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> 2800
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©
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2600Q 4 1 1 444444
0O 1 2 3 4 5 6 7 8 9 10

Number of d electrons

Fig. 8.12 Lattice energies of divalent transition metal
fluorides determined from Born-Haber cycle calcu-
lations. (From Waddington, 1959)
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observed for other halides. Ions that do not exhibit CFSE are d%(Ca), dS(HS)(Mn) §
and d'°(Zn), and their lattice energies fall on the lower, dashed curve. Most ions 4

do show some degree of CFSE, however, and their lattice energies fall on the

upper, solid curve. For the fluorides (Fig. 8.12), the agreement between the

calculated CFSE and the difference in lattice energy AU [i.g U(Born—Haber)
— U(Born—Mayer)] is reasonable and indicates that the bonding may be treated

as ionic. For the other halides, however, AU > CFSE and indicates that other

effects, perhaps covalent bonding, must be present.

8.6.1.2 Jahn-Teller distortions

In many transition metal compounds, the metal coordination .is distorted
octahedral and the distortions are such that the two axial bonds are either §horter ]
than or longer than the other four bonds. The J ahn-Teller effecg is I'eSpO;lflble for 1
these distortions in d°, d’(LS) and d*(HS) ions. Conside.:r the d° ion Cu®* whose {
configuration is (tzg)s(eg)3. One of the e, orbitals contains two electrons and .the i
other contains one. The singly occupied orbital can be either d. or _dx; _,andina |
free ion situation both would have the same energy. However, since the rne.tal
coordination is octahedral the e, levels, with one doubly and one singly occupled
orbitals, are no longer degenerate. The e, orbitals are hlgh energy orbitals )
(relative to t,,) since they point directly towards the surroupdmg ligands an(:l the
doubly occupied orbital will experience stronger repulsmng and hence avef 1
somewhat higher energy than the singly occupied f)rbltal. This has the effeqt~ o
lengthening the metal-ligand bonds in the directions of the doul?ly occuplzd 1
orbital, e.g. if the d,. orbital is doubly occupied, the two metal-ligand bonds
along the zaxis will be longer than the other foqr me?tal—llgand bonds. The enerﬁy 1
level diagram for this latter situation is shown in Fx'g. 8.13(a). Lengthening o;'t f‘.‘.
metal-ligand bond along the z axis leadstoa lowermglof energy of the d, orbital. ‘_
The distorted structure is stabilized by an amount 36, relative to the regular‘
octahedral arrangement and, hence, the distorted structure becomes the ;%

observed, ground state. .

High spin d* and low spin d” ions also have odd number§ of ey eleptrons and‘:"
show Jahn—Teller distortions. It is not clear which type of distortion is preferr‘ed;j

(0) €g 4 dxz-y2

d YA
(b) to —4H— dxy 351
—4- —4-dxz.dyz

Fig. 8.13 Energy level diagram for the d-leyels ina

d° ion experiencing a Jahn-Teller distortion. The

two bonds parallel to z are longer than the other
: four
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(Le. two short and four long bonds, or vice versa) and the actual shapes in a
particular structure must be determined experimentally. The degeneracy of the
t,, levels may also be removed by the Jahn—Teller effect, but the magnitude of the
splitting, 4, in Fig. 8.13(b), is small and the effect is relatively unimportant.

The normal coordination environment of the Cu?* ion is distorted octahedral
with four short and two long bonds. The distortion varies from compound to
compound. In, for example, CuF, (distorted rutile structure), the distortion is
fairly small (four fluorine atoms at 1.93A, two at 2.27 A), but is larger in CuCl,
(four chlorine atoms at 2.30 A, two at 2.95 A) and extreme in tenorite, CuO, which
is effectively square planar (four oxygen atoms at 1.95A, two at 2.87A).

The importance of Jahn-Teller distortions in Cu?* and Cr?* (d* ion)
compounds is seen by comparing the structures of the oxides and fluorides of the
first-row divalent, transition metal ions. For the oxide series, MO(M?2* is Ti, V,
Cr, Mn, Fe, Co, Ni and Cu), all have the rock salt structure with regular
octahedral coordination apart from (a) CuO which contains grossly distorted
(CuOy) octahedra and possibly (b) CrO, whose structure is not known. For the
fluoride series, MF,, all have the regular rutile structure apart from CrF, and
CuF, which have distorted rutile structures.

Other examples of distorted octahedral coordination due to the Jahn—Teller
effect are found in compounds of Mn**(HS) and Ni®*(LS).

8.6.1.3 Square planar coordination

The d® jons—Ni**, Pd*>*, Pt’*—commonly have square planar or
rectangular planar coordination in their compounds. In order to understand this,
consider the d energy level diagram for such ions in (a) octahedral and (b)
distorted octahedral fields:

() The normal configuration of a d° ion in an octahedral field is (,,)%(e,)*. The
two e, electrons singly occupy the d,. and d,._,, orbitals, which are
degenerate, and the resulting compounds, with unpaired electrons, are
paramagnetic.

(b) Consider, now, the effect of distorting the octahedron and lengthening the
two metal-ligand bonds along the z axis. The e, orbitals lose their
degeneracy, and the d,, orbital becomes stabilized by an amount 14,
(Fig. 8.13). For small elongations along the z axis, the pairing energy required
to doubly occupy the d,, orbital is larger than the energy difference between
d,. and d,,_,, ie. P> d,. There is no gain in stability if the d,, orbital is
doubly occupied, therefore, and no reason why small distortions from
octahedral coordination should be stable. With increasing elongation along
the z axis, however, a stage is reached where P < 8, and in which the doubly
occupied d,, orbital becomes stabilized and is the preferred ground state for a
d® ion. The distortion from octahedral coordination is now sufficiently large
that the coordination is regarded as square planar; in many cases, e.g. PdO,
there are, in fact, no axial ligands along z and, hence, the transformation from
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octahedral to square planar coordination is complete. Because. they have no
unpaired electrons, square planar compounds are diamagnetic.

Square planar coordination is more common with 4d and 5d trgnsition
elements than with 3d elements because the 4d and, especially, 5d orbitals are
more diffuse and extend to greater radial distances from the nucleus.
Consequently, the magnitude of the crystal (or ligand) field splitting (A, 8) caused

by a particular ligand, e.g. 02", increases in the series 34 < 4d < 5d. Tllus, NiO
has the rock salt structure with regular octahedral coordination of Ni?*(3d ion) 5
whereas PdO and PtO both have square planar coordination for the metal atcirrgs L
(4d and 5d). The only known compound of palladium with octahedral Pd** is
PdF, (rutile structure) and no octahedral Pt2* or Au®* compounds are known.

8.6.1.4 Tetrahedral coordination

As stated earlier, a tetrahedral field causes splitting of the d energy leyels, but i
the opposite sense to an octahedral field (Fig. 8.9b.). Further, the magmt.ude of t.he
splitting, A, is generally less in a tetrahedral field since none of the d Orblt?.ls point
directly towards the four ligands. Rather, the d,,, d,. and d,, orbitals are

somewhat closer to the ligands than are the other two orbitals, Fig. 8.14 (only §

two orbital directions, d,, and d,._ . are shown). Jahn-Teller distortions age.xin
occur, especially when the upper £, orbitals contain 1, 2, 4 or 5 electrons (i.e.

d3(HS), d%(HS), d° and d°). Details will not be given since various types of
distortion are possible (e.g. tetragonal or trigonal distortions) and these have not 4
been as well studied as have the octahedral distortions. A common type of
distortion is a flattening or elongation of the tetrahedron in the direction of one of &
the twofold axes of the tetrahedron (e.g. along z in Fig. 8.14). An example is the

flattened CuCl, tetrahedron in Cs,CuCl,.

— ==

z
—p X

Fig. 8.14 The orientation of d orbitals in a tetrahedral
field
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8.6.1.5 Tetrahedral versus octahedral coordination

Most transition metal ions prefer octahedral coordination or a distorted
variant of octahedral and an important factor is their large CFSE in octahedral
sites. This can be estimated as follows. In octahedral coordination, each ¢,
electron experiences a stabilization of (4/10)A°® and each e, electron a
destabilization of (6/10)A°*". Thus Cr3*, d*(t;) has a CFSE of 1.2A°" whereas
Cu?*d®(t,,)%e,)? has a CFSE of 0.6A°". In tetrahedral coordination, each e
electron has a stabilization of (6/10)A'" and each ¢, electron has a destabilization
of (4/10)A*! (Fig. 8.9). Thus, Cr3®* would have a CFSE of 0.8A** and Cu?* would
have a CFSE of 0.4A"'. With the guideline that

A = 0.4A°

the values of A° and A' for ions may be used to predict site preferences. More
accurate values may be obtained spectroscopically and are given in Table 8.15 for
some oxides of transition metal ions. It can be seen that high spin d° ions, as well
as d° and d'° ions, have no particular preference for octahedral or tetrahedral
sites insofar as crystal field effects are concerned. Ions such as Cr3*, Ni?* and
Mn** show the strongest preference for octahedral coordination: thus
tetrahedral coordination is rare for Ni**

The coordination preferences of ions are shown by the type of spinel structure
that they adopt. Spinels have the formula AB,O, and may be:

(a) normal— A tetrahedral, B octahedral;
(b) inverse—A octahedral, B tetrahedral and octahedral;
(c) some intermediate between normal and inverse.

The parameter, y, is the fraction of A ions on octahedral sites. For normal spinels,
y =0; for inverse, y = 1; and for a random arrangement of A and Bions, y = 0.67.
Lattice energy calculations show that, in the absence of CFSE effects, spinels of
the type 2, 3 (i.e. A=M2*, B= M3*, eg. MgAl,O,) tend to be normal whereas

Table 8.15 Crystal field stabilization energies (kJ mol™ ') estimated for transition metal
oxides. (Data from Dunitz and Orgel, 1960)

Octahedral Tetrahedral Excess octahedral

Ton stabilization stabilization stabilization
Ti3* at 87.4 58.5 289
\'ANd d? 160.1 106.6 53.5
Cr3t a3 224.5 66.9 157.6
Mn3* a* 1354 40.1 95.3
Fe’z"+ d° 0 0 0

Mn ds 0 0 0

Fe2* de 49.7 33.0 16.7
Co?* d’ 92.8 619 30.9
Ni2* as 122.1 359 86.2
Cu?* a4° 90.3 26.8 63.5
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Table8.16 They parameters of some spinels. (Data from Greenwood, 1968 and Dunitz and
Orgel, 1960)

M3® M2t Mg?* Mn?* Fe?™ Co?* Ni2* Cu?? Zn**
AP 0 0.3 0 0 0.75 0.4 0
Cr3* 0 0 0 0 0 0 0
Fe3* 0.9 0.2 1 1 1 1 0
Mn3* 0 0 0.67 0 1 0 0
Co3* — —_ — 0 — — 0

spinels of type 4, 2 (ie. A=M**, B=M?", eg. TiMg,0,) tend to be inverse.
However, these preferences may be changed by the intervention of CFSE effects, |
as shown by the y parameters of some 2, 3 spinels in Table 8.16. Examples are: |

(a) All chromate spinels contain octahedral Cr3*
consistent with the very large CFSE of Cr**
into tetrahedral sites in NiCr,O,. i

(b) Most 2,3 Mg?" spinels are normal apart from MgFe,O, which is essentially
inverse. This reflects the lack of any CFSE for Fe3* 1

(©) Co;0,(=Co0-Co,0,) is normal because low spin Co®* gains more CFSE - §
by going into the octahedral site than Co?* loses by occupying the
tetrahedral site. Mn, Oy is also normal. Magnetite, Fe,O,, however, isinverse
because whereas Fe3* has no CFSE in either tetrahedral or octahedral.
coordination, Fe2* has a preference for octahedral sites. \

and are normal. This is
and ions such as Ni?* areforced |

Spinels usually have cubic symmetry but some show tetragonal distortions in '
which one of the cell edges is of a different length to the other two. The Jahn—
Teller effect gives rise to such distortions in Cu?* containing spinels, CuFe,O,
(the tetragonal unit cell parameter ratio, ¢/a = 1.06) and CuCr,0,(c/a =10.91)
CuFe,0, is an inverse spinel with octahedral Cu?* ions and the Jahn-Teller
effect distorts the CuO, octahedra so that the two Cu—O bonds along z ar
longer than the four Cu——O bonds in the xy plane. On the other hand, CuCr,O
is normal and the CuO, tetrahedra are flattened in the z direction, again due t
the Jahn—Teller effect, thereby causing a shortened c axis.

8.6.2 Inert pair effect

The heavy, post-transition elements, especially Tl, Sn, Pb, Sb and Bi exhibit, i i
some compounds, a valence that is two less than the group valence (e.g. the i§

effect’ and manifests itself structurally bya dlstortlon of the metal ion coordmatlon ]
environment. Thus, Pb?* has the configuration: (Xe core) 4f'*5d*%6s?, and the | ]
65 pair is ‘stereochemically active’ in that these electrons are not in a sphencally 4
symmetrical orbital but stick out to one side of the Pb>* ion (perhaps in some ‘:
kind of s—p hybridized orbital).
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Fig. 8.15 The structure of red PbO showing the presence
of the inert pair effect by the variation in Pb—O bond
distances

Various kinds of distorted coordination polyhedra occur. Sometimes, the lone
pair comes between the metal ion and some of its immediate anionic neighbours
and causes a variation of bond length about the metal ion, e.g. red PbO has a
structure that is a tetragonal distortion of the CsCl structure (Fig. 8.15). Four
oxygens are situated at 2.3A from the Pb?* ion, which is a reasonable Pb—O
bond length, but the other four oxygens are at 4.3 A. Although the lone pair is not
directly visible, its presence is apparent from the distorted nature of the cubic
coordination of Pb?™.

A related distortion occurs in SnS which has a distorted rock salt structure. In
this case, the SnS, octahedra are distorted along a [111] direction such that three
sulphur atoms on one side of the tin are at ~2.64A but the other three are
repelled by the lone pair to a distance of ~ 3.31 A.

Another common kind of distortion occurs when the lone pair simply takes the
plane of an anion and its associated pair of bonding electrons. Five-coordinated

structures result in, for example, TlI, in which one corner (anion) of the
octahedron ‘TII;’ is missing.

Questions

8.1 The oxides MnO, FeO, CoO, NiO all have the cubic rock salt structure with
octahedral coordination of the cations. The structure of CuO is different and
contains grossly distorted CuOg octahedra. Explain.

8.2 While the d electrons in many transition metal compounds may not be
involved directly in bond formation, they nevertheless exert a considerable
influence on structure. Explain.

8.3 The mineral grossular, Ca,;Al,Si;O,, has the garnet structure, Chapter 16,
with 8-coordinate Ca, octahedral Al and tetrahedral Si. Determine the
probable coordination number and environment of oxygen and show that
the structure obeys Pauling’s electrostatic valency rule.
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8.4 The most stable oxide of lithium is Li, O but for rubidium and caesium, the
peroxides M,0, and superoxides MO, are more stable than the simple
oxides M,0. Explain.

8.5 BeF, has the same structure as SiO,, MgF, is the same as rutile and CaF,
has the fluorite structure. Does this seem reasonable?

8.6 Account for the observation that whereas CuF, and Cul are stable |

compounds, CuF and Cul, are not stable.

8.7 In Table 7.5 are given unit cell constants for some oxides MO with the }
rocksalt structure. Assuming that () r..- =1.26A; (i) r,.- =140A, |
calculate for each (a) two values of the cation radius, ry: «, (b) two values for )
the radius ratio, ry../r.:-. Assess the usefulness of the radius ratio rules in
predicting octahedral coordination for M2* for these oxides. Repeat the

calculations for two oxides with the wurtzite structure, Table 7.9.

8.8 Calculate lattice energy values for the alkaline earth oxides using
Kapustinskii’s equation and the data given in Table 7.5. Compare your
results with those given in Table 8.6. Estimate the enthalpies of formation of §

these oxides.

8.9 Using Sanderson’s methods, estimate the partial ionic character of the 5
sodium halides. Hence calculate the radii of the atoms involved and the unit §
cell a value (all have the rock salt structure). Compare your answers with the

data given in Table 7.5.
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